Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Scattering of sound waves in two stepped cylindrical duct which walls are coated with different acoustically absorbent materials is investigated by using Wiener-Hopf technique directly and by determining scattering matrices. First, by using Fourier transform technique we obtain a couple of modified Wiener-Hopf equations whose solutions involve four sets of infinitely many unknown expansion coefficients providing systems of linear algebraic equations. Then we determine scattering matrices of the problem and we state the total transmitted field by using generalized scattering matrix method. Numerical results are compared for different parameters.

Go to article

Authors and Affiliations

Ayşe Tiryakioglu
Ahmet Demir
Download PDF Download RIS Download Bibtex

Abstract

Discontinuous coefficients in the Poisson equation lead to the weak discontinuity in the solution, e.g. the gradient in the field quantity exhibits a rapid change across an interface. In the real world, discontinuities are frequently found (cracks, material interfaces, voids, phase-change phenomena) and their mathematical model can be represented by Poisson type equation. In this study, the extended finite element method (XFEM) is used to solve the formulated discontinuous problem. The XFEM solution introduce the discontinuity through nodal enrichment function, and controls it by additional degrees of freedom. This allows one to make the finite element mesh independent of discontinuity location. The quality of the solution depends mainly on the assumed enrichment basis functions. In the paper, a new set of enrichments are proposed in the solution of the Poisson equation with discontinuous coefficients. The global and local error estimates are used in order to assess the quality of the solution. The stability of the solution is investigated using the condition number of the stiffness matrix. The solutions obtained with standard and new enrichment functions are compared and discussed.

Go to article

Bibliography

[1] T.P. Fries and H.G. Matthies. Classification and overview of meshfree methods. Informatikbericht Nr.: 2003-3. Technical University Braunschweig, Brunswick, Germany, 2004.
[2] M.A. Schweitzer. Meshfree and generalized finite element methods. Postdoctoral dissertation. Mathematisch–Naturwissenschaftlichen Fakultat der Rheinischen Friedrich-Wilhelms-Universitat, Bonn, Germany, 2008.
[3] Vinh Phu Nguyen, C. Anitescu, S. Bordas, and T. Rabczuk. Isogeometric analysis: An overview and computer implementation aspects. Mathematics and Computers in Simulation, 117:89–116, 2015. doi: 10.1016/j.matcom.2015.05.008.
[4] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5):601–620, 1999.
[5] R. Merle and J. Dolbow. Solving thermal and phase change problems with the eXtended finite element method. Computational Mechanics, 28(5):339–350, 2002. doi: 10.1007/s00466-002-0298-y.
[6] J. Chessa, P. Smolinski, and T. Belytschko. The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering, 53(8):1959–1977, 2002. doi: 10.1002/nme.386.
[7] P. Stapór. The XFEM for nonlinear thermal and phase change problems. International Journal of Numerical Methods for Heat & Fluid Flow, 25(2):400–421, 2015. doi: 10.1108/HFF-02-2014-0052.
[8] J.Y. Wu and F.B. Li. An improved stable XFEM (Is-XFEM) with a novel enrichment function for the computational modeling of cohesive cracks. Computer Methods in Applied Mechanics and Engineering, 295:77–107, 2015. doi: 10.1016/j.cma.2015.06.018.
[9] P. Hansbo, M.G. Larson, and S. Zahedi. A cut finite element method for a stokes interface problem. Applied Numerical Mathematics, 85:90–114, 2014. doi: 10.1016/j.apnum.2014.06.009.
[10] E. Wadbro, S. Zahedi, G. Kreiss, and M. Berggren. A uniformly well-conditioned, unfitted Nitsche method for interface problems. BIT Numerical Mathematics, 53(3):791–820, 2013. doi: 10.1007/s10543-012-0417-x.
[11] I. Babuška and U. Banerjee. Stable generalized finite element method (SGFEM). Computer Methods in Applied Mechanics and Engineering, 201:91–111, 2012. doi: 10.1016/j.cma.2011.09.012.
[12] K. Kergrene, I. Babuška, and U. Banerjee. Stable generalized finite element method and associated iterative schemes; application to interface problems. Computer Methods in Applied Mechanics and Engineering, 305:1–36, 2016. doi: 10.1016/j.cma.2016.02.030.
[13] G. Zi and T. Belytschko. New crack-tip elements for XFEM and applications to cohesive cracks. International Journal for Numerical Methods in Engineering, 57(15):2221–2240, 2003. doi: 10.1002/nme.849.
[14] G. Ventura, E. Budyn, and T. Belytschko. Vector level sets for description of propagating cracks in finite elements. International Journal for Numerical Methods in Engineering, 58(10):1571–1592, 2003. doi: 10.1002/nme.829.
[15] J.E. Tarancón, A.Vercher, E. Giner, and F.J. Fuenmayor. Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 77(1):126–148, 2009. doi: 10.1002/nme.2402.
[16] T.P. Fries. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 75(5):503–532, 2008. doi: 10.1002/nme.2259.
[17] P. Stąpór. Application of XFEM with shifted-basis approximation to computation of stress intensity factors. Archive of Mechanical Engineering, 58(4):447–483, 2011. doi: 10.2478/v10180-011-0028-0.
[18] N. Moës, M. Cloirec, P. Cartraud, and J.-F. Remacle. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 192(28):3163–3177, 2003. doi: 10.1016/S0045-7825(03)00346-3.
[19] J. Dolbow, N. Moës, and T. Belytschko. Discontinuous enrichment in finite elements with a partition of unity method. Finite Elements in Analysis and Design, 36(3):235–260, 2000. doi: 10.1016/S0168-874X(00)00035-4.
[20] B.A. Saxby. High-order XFEM with applications to two-phase flows. PhD thesis, The University of Manchester, Manchester, UK, 2014. www.escholar.manchester.ac.uk/uk-ac-manscw:234445.
Go to article

Authors and Affiliations

Paweł Stąpór
1

  1. Faculty of Management and Computer Modelling, Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the extended finite element method (XFEM) is combined with a recovery procedure in the analysis of the discontinuous Poisson problem. The model considers the weak as well as the strong discontinuity. Computationally efficient low-order finite elements provided good convergence are used. The combination of the XFEM with a recovery procedure allows for optimal convergence rates in the gradient i.e. as the same order as the primary solution. The discontinuity is modelled independently of the finite element mesh using a step-enrichment and level set approach. The results show improved gradient prediction locally for the interface element and globally for the entire domain.

Go to article

Bibliography

[1] P. Stąpór. An improved XFEM for the Poisson equation with discontinuous coefficients. Archive of Mechanical Engineering, 64(1):123–144, 2017. doi: 10.1515/meceng-2017-0008.
[2] T. Grätsch and K.-J. Bathe. A posteriori error estimation techniques in practical finite element analysis. Computers & Structures, 83(4-5):235–265, 2005. doi: 10.1016/j.compstruc.2004.08.011.
[3] M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 142(1-2):1–88, 1997. doi: 10.1016/S0045-7825(96)01107-3.
[4] P.J. Payen and K.-J. Bathe. A stress improvement procedure. Computers & Structures, 112-113:311–326, 2012. doi: 10.1016/j.compstruc.2012.07.006.
[5] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5):601–620, 1999. doi: 10.1002/(SICI)1097-0207(19990620)45:5601::AID-NME598>3.0.CO;2-S.
[6] P. Stąpór. Application of XFEM with shifted-basis approximation to computation of stress intensity factors. The Archive of Mechanical Engineering, 58(4):447–483, 2011. doi: 10.2478/v10180-011-0028-0.
[7] D. Belsley, R.E.Welsch, and E.Kuh. The Condition Number. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley & Sons, Inc., Hoboken, New Jersey, 1980.
[8] S. Hou and X.-D. Liu. A numerical method for solving variable coeffiecient elliptic equation with interfaces. Jurnal of Computational Physics, 202(2):411–445, 2005. doi: 10.1016/j.jcp.2004.07.016.
Go to article

Authors and Affiliations

Paweł Stąpór
1

  1. Faculty of Management and Computer Modelling, Kielce University of Technology, Kielce, Poland.
Download PDF Download RIS Download Bibtex

Abstract

Noise reduction inside waveguide systems has gained momentum owing to a great interest in it. To attenuate the sound in a broad frequency range, this study aims to compare the effects of two acoustic liners, a perforated plate backed by an air cavity (PP-Air cavity), or by a porous material (PP-PM), on the acoustic behaviour of lined ducts using a numerical model to compute the multimodal scattering matrix. From this matrix, the reflection and the transmission coefficients are computed and therefore the acoustic power attenuation is deduced. Moreover, the effects of geometry of ducts with and without changes in the section are investigated. The numerical results are obtained for five configurations, including cases of narrowing and widening of a duct portion with sudden or progressive discontinuities. Accordingly, numerical coefficients of reflection and transmission as well as the acoustic power attenuation show the relative influence of acoustic liners in each type of configuration.

Go to article

Authors and Affiliations

Amine Makni
Mohamed Taktak
Mabrouk Chaabane
Mohamed Haddar
Download PDF Download RIS Download Bibtex

Abstract

A simple analytical method is developed to estimate frequencies of longitudinal modes in closed hard-walled ducts with discontinuities in a cross-sectional area. The approach adopted is based on a general expression for the acoustic impedance for a plane wave motion in a duct and conditions of impedance continuity at duct discontinuities. Formulae for mode frequencies in a form of transcendental equations were found for one, two and three discontinuities in a duct cross-section. An accuracy of the method was checked by a comparison of analytic predictions with calculation data obtained by use of numerical implementation based on the forced oscillator method with a finite difference algorithm.

Go to article

Authors and Affiliations

Mirosław Meissner
Download PDF Download RIS Download Bibtex

Abstract

The Gaussian mixture model (GMM) method is popular and efficient for voice conversion (VC), but it is often subject to overfitting. In this paper, the principal component regression (PCR) method is adopted for the spectral mapping between source speech and target speech, and the numbers of principal components are adjusted properly to prevent the overfitting. Then, in order to better model the nonlinear relationships between the source speech and target speech, the kernel principal component regression (KPCR) method is also proposed. Moreover, a KPCR combined with GMM method is further proposed to improve the accuracy of conversion. In addition, the discontinuity and oversmoothing problems of the traditional GMM method are also addressed. On the one hand, in order to solve the discontinuity problem, the adaptive median filter is adopted to smooth the posterior probabilities. On the other hand, the two mixture components with higher posterior probabilities for each frame are chosen for VC to reduce the oversmoothing problem. Finally, the objective and subjective experiments are carried out, and the results demonstrate that the proposed approach shows greatly better performance than the GMM method. In the objective tests, the proposed method shows lower cepstral distances and higher identification rates than the GMM method. While in the subjective tests, the proposed method obtains higher scores of preference and perceptual quality.

Go to article

Authors and Affiliations

Peng Song
Li Zhao
Yongqiang Bao
Download PDF Download RIS Download Bibtex

Abstract

The evaluation accuracies of rock mass structures based on the ratings of the Rock Quality Designation (RQD) and discontinuity spacing (S) in the Rock Mass Rating (RMR) system are very limited due to the inherent restrictions of RQD and S. This study presents an improvement that replaces these two parameters with the modified blockiness index (Bz) in the RMR system. Before proceeding with this replacement, it is necessary for theoretical model building to make an assumption that the discontinuity network contains three sets of mutually orthogonal disc-shaped discontinuities with the same diameter and spacing of discontinuities. Then, a total of 35 types of theoretical DFN (Discrete Fracture Network) models possessing the different structures were built based on the International Society for Rock Mechanics (ISRM) discontinuity classification (ISRM, 1978). In addition, the RQD values of each model were measured by setting the scanlines in the models, and the Bz values were computed following the modified blockiness evaluation method. Correlations between the three indices (i.e., Bz, RQD and S) were explored, and the reliability of the substitution was subsequently verified. Finally, RMR systems based on the proposed method and the standard approach were applied to real cases, and comparisons between the two methods were performed. This study reveals that RQD is well correlated with S but is difficult to relate to the discontinuity diameter (D), and Bz has a good correlation with RQD/S. Additionally, the ratings of RQD and S are always far from the actual rock mass structure, and the Bz ratings are found to give better characterizations of rock mass structures. This substitution in the RMR system was found to be acceptable and practical.
Go to article

Authors and Affiliations

Qingfa Chen
Tingchang Yin
Wenjing Niu
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to identify thoroughly the geological structure of the Choszczno Anticline for potential CO2 storage. The paper presents the interpretation of seismic materials for a selected seismic profile reprocessed into a section of reflection coefficients characterized by increased recording resolution as compared to the wave image. Particular attention was paid to the geological complexes associated with the Jurassic reservoir formations suitable for carbon dioxide storage within the anticline. The correlation of the identified layers reflects the lithology and structure of the rock series. It allows determination of the thicknesses of the series and changes within them, and enables linking the individual layers with the lithologic units, based on geological data. The study refers to the whole Zechstein-Mesozoic succession of the Choszczno Anticline, with special emphasis on these series, in which there are potential reservoir formations for CO2 storage. The interpretation has significantly expanded the amount of data provided in standard seismic documentations. While assessing the suitability of the formations for CO2 storage, special attention should be paid to the tectonic disturbances within the Komorowo Formation, especially in the top part of the Choszczno structure. The Reed Sandstone bed is more continuous in this respect. The obtained results seem to suggest wider application of reprocessing of seismic materials into effective reflection coefficients to study the geological structure, also for other structures.

Go to article

Authors and Affiliations

Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

The recently released global crustal model CRUST 2.0 has been validated both globally and regionally focusing on its information content regarding the crust-mantle boundary. The numerical assessment of the metric information given by the database in terms of thickness and position of individual crustal layers with respect to sea level takes place by investigating correlations with the surface topography and by comparing those values with known theoretical approaches that describe the compensation mechanism between crust and mantle. The investigations described focused especially on the last crustal layer of CRUST 2.0, which represents the boundary surface between crust and mantle, widely known as Mohorovicic discontinuity. A direct comparison of the Moho structure as given from the crustal model CRUST 2.0 with the respective compensation depths derived theoretically from the application of the Airy/Heiskanen hypothesis is carried out both globally and regionally. The comparisons, especially those referring to selected regions of the globe expressing characteristic tectonic features, such as mountain belts or oceanic ridges, enable both the numerical assessment of the database while giving at the same time a preliminary insight on the local and regional behaviour of known isostatic mechanisms.
Go to article

Authors and Affiliations

Dimitrios Tsoulis
Christos Venesis
Download PDF Download RIS Download Bibtex

Abstract

Thermal self-action of an acoustic beam with one discontinuity or several shock fronts is studied in a Newtonian fluid. The stationary self-action of a single sawtooth wave with discontinuity (or some integer number of these waves), symmetric or asymmetric, is considered in the cases of self-focusing and self- defocusing media. The results are compared with the non-stationary thermal self-action of the periodic sound. Thermal self-action of a single shock wave which propagates with the various speeds is considered.
Go to article

Authors and Affiliations

Anna Perelomova
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the research studies carried out on the application of lattice Boltzmann method (LBM) to computational aeroacoustics (CAA). The Navier-Stokes equation-based solver faces the difficulty of computational efficiency when it has to satisfy the high-order of accuracy and spectral resolution. LBM shows its capabilities in direct and indirect noise computations with superior space-time resolution. The combination of LBM with turbulence models also work very well for practical engineering machinery noise. The hybrid LBM decouples the discretization of physical space from the discretization of moment space, resulting in flexible mesh and adjustable time-marching. Moreover, new solving strategies and acoustic models are developed to further promote the application of LBM to CAA.

Go to article

Authors and Affiliations

Weidong Shao
Jun Li
Download PDF Download RIS Download Bibtex

Abstract

Duct silencers provide effective noise reduction for heating, ventilation and air conditioning systems. These silencers can achieve an excellent sound attenuation through the attributes of their design. The reactive silencer works on the principle of high reflection of sound waves at low frequencies. On the other hand, the dissipative silencer works on the principle of sound absorption, which is very effective at high-frequencies. Combining these two kinds of silencers allowed covering the whole frequency range. In this paper, the effect of liner characteristics composed of a perforated plate backed by a porous material and geometry discontinuities on the acoustic power attenuation of lined ducts is evaluated. This objective is achieved by using a numerical model to compute the multimodal scattering matrix, thus allowing deducing the acoustic power attenuation. The numerical results are obtained for six configurations, including cases of narrowing and widening of a radius duct with sudden or progressive discontinuities. Numerical acoustic power attenuation shows the relative influence of the variation in the values of each parameter of the liner, and of each type of radius discontinuities of ducts.
Go to article

Authors and Affiliations

Dhouha Tounsi
1
Wafa Taktak
2
Raja Dhief
1 3
Mohamed Taktak
1 3
Mabrouk Chaabane
3
Mohamed Haddar
1

  1. Mechanics, Modelling and Production Laboratory (LA2MP), Mechanical Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
  2. National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
  3. Faculty of Sciences of Sfax, Sfax, Tunisia

This page uses 'cookies'. Learn more