Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 24
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A new notion of a realization of transfer matrix of (P;Q; V)-cone-system for discrete-time linear systems is proposed. Necessary and sufficient conditions for the existence of the realizations are established. A procedure is proposed for computation of a realization of a given proper transfer matrix T(z) of (P;Q; V)-cone-system. It is shown that there exists a realization of T(z) of (P;Q; V)-cone-system if and only if there exists a positive realization of T(z) = V T(z)Q!1, where V;Q and P are non-singular matrices generating the cones V;Q and P respectively.

Go to article

Authors and Affiliations

T. Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

In the paper there has been made an advantage of the non-classical operational calculus to determination of the response of the certain discrete time-systems. The Z-transform is often used to analysis of the stationary discrete time-systems. However, the use of the Z-transform to determination of the response especially of the non-stationary discrete time-systems is doubtful or may cause complications. This method leads to differential equations of n-th order of variable coefficients, whose solutions are very difficult or impossible. The non-classical operational calculus can be used to analysis both of the stationary and non-stationary discrete time-systems. The presented method with the use of the Heaviside operator soon leads to the target without unnecessary differential equations.

Go to article

Authors and Affiliations

E. Mieloszyk
A. Milewska
M. Magulska
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we show that signal sampling operation can be considered as a kind of all-pass filtering in the time domain, when the Nyquist frequency is larger or equal to the maximal frequency in the spectrum of a signal sampled. We demonstrate that this seemingly obvious observation has wideranging implications. They are discussed here in detail. Furthermore, we discuss also signal shaping effects that occur in the case of signal under-sampling. That is, when the Nyquist frequency is smaller than the maximal frequency in the spectrum of a signal sampled. Further, we explain the mechanism of a specific signal distortion that arises under these circumstances. We call it the signal shaping, not the signal aliasing, because of many reasons discussed throughout this paper. Mainly however because of the fact that the operation behind it, called also the signal shaping here, is not a filtering in a usual sense. And, it is shown that this kind of shaping depends upon the sampling phase. Furthermore, formulated in other words, this operation can be viewed as a one which shapes the signal and performs the low-pass filtering of it at the same time. Also, an interesting relation connecting the Fourier transform of a signal filtered with the use of an ideal low-pass filter having the cut frequency lying in the region of under-sampling with the Fourier transforms of its two under-sampled versions is derived. This relation is presented in the time domain, too.

Go to article

Authors and Affiliations

Andrzej Borys
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The global stability of discrete-time nonlinear systems with descriptor positive linear parts and positive scalar feedbacks is addressed. Sufficient conditions for the global stability of standard and fractional nonlinear systems are established. The effectiveness of these conditions is illustrated on numerical examples.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
ORCID: ORCID
Andrzej Ruszewski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The stability analysis for discrete-time fractional linear systems with delays is presented. The state-space model with a time shift in the difference is considered. Necessary and sufficient conditions for practical stability and for asymptotic stability have been established. The systems with only one matrix occurring in the state equation at a delayed moment have been also considered. In this case analytical conditions for asymptotic stability have been given. Moreover parametric descriptions of the boundary of practical stability and asymptotic stability regions have been presented.

Go to article

Authors and Affiliations

Andrzej Ruszewski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Tuning rules for PID and PI-PI servo controllers are developed using a pole placement approach with a multiple pole, i.e. a triple one in the case of PID and a quadruple for PI-PI. The controllers involve complex roots in the numerators of the transfer functions. This is not possible in the classical P-PI structure which admits real roots only. The settling time of the servos determined by the multiple time constant is the only design parameter. Nomograms to read out discrete controller settings in terms of the time constant and control cycle are given. As compared to the classical structures, the upper limit on the control cycle is now twice longer in the case of PID, and four times in the case of PI-PI. This implies that the settling times can be shortened by the same ratios. Responses of a PLC-controlled servo confirm the validity of the design.
Go to article

Bibliography

  1.  B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. Berlin Heidelberg: Springer, 2008.
  2.  G. Ellis, Ed., Control System Design Guide, 4th ed. ButterworthHeinemann, 2012.
  3.  G.W. Younkin, Industrial Servo Control Systems, 2nd ed. New York: Marcel Dekker, 2002.
  4.  S.-M. Yang and K.-W. Lin, “Automatic Control Loop Tuning for Permanent-Magnet AC Servo Motor Drives,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1499–1506, 2016.
  5.  G.F. Franklin, J.D. Powell, and A.F. Emami-Naeini, Feedback Control of Dynamic Systems, 7th ed. Reading: Addison-Wesley, 2019.
  6.  L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators. London: Springer, 2000.
  7.  T. Tarczewski, M. Skiwski, L.J. Niewiara, and L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 49–58, 2018.
  8.  V. Rao and D. Bernstein, “Naive control of the double integrator,” IEEE Control Syst. Mag., vol. 21, pp. 86–97, 2001.
  9.  P.B. Schmidt and R.D. Lorenz, “Design principles and implementation of acceleration feedback to improve performance of DC drives,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 594–599, 1992.
  10.  T. Żabiński and L. Trybus, “Tuning P-PI and PI-PI controllers for electrical servos,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, pp. 51–58, 2010.
  11.  D.E. Seborg, T.F. Edgar, D.A. Mellichamp, and F.J. Doyle, Process Dynamics and Control, 4th ed. New York: Wiley, 2016.
  12.  C. Grimholt and S. Skogestad, “Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules,” J. Process Control, vol. 70, pp. 36–46, 2018.
  13.  K.J. Åström and T. Hägglund, Advanced PID Control, Research Triangle Park, 2005.
  14.  “Maxima CAS homepage.” [Online]. Available: https://maxima.sourceforge.io/.
  15.  “ESTUN Industrial Technology Europe.” [Online]. Available: https://www.estuneurope.eu/.
  16.  “BECKHOFF New Automation Technology.” [Online]. Available: https://www.beckhoff.com/.
  17. EN 61131-3, Programmable controllers – Part 3: Programming languages (IEC 61131-3:2013), International Standard, CENELEC Std., 2013.
Go to article

Authors and Affiliations

Andrzej Bożek
1
ORCID: ORCID
Leszek Trybus
1
ORCID: ORCID

  1. Department of Computer and Control Engineering, Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Necessary and sufficient conditions for the pointwise completeness and the pointwise degeneracy of linear discrete-time different fractional order systems are established. It is shown that if the fractional system is pointwise complete in one step (q = 1), then it is also pointwise complete for q = 2, 3…

Go to article

Authors and Affiliations

T. Kaczorek
Ł. Sajewski
Download PDF Download RIS Download Bibtex

Abstract

The asymptotic stability of positive descriptor continuous-time and discrete-time linear systems is considered. New sufficient conditions for stability of positive descriptor linear systems are established. The efficiency of the new stability conditions are demonstrated on numerical examples of continuous-time and discrete-time linear systems.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Bialystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The positivity and absolute stability of a class of nonlinear continuous-time and discretetime systems are addressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient conditions for the absolute stability of this class of nonlinear systems are also given.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The asymptotic stability of fractional positive descriptor continuous-time and discretetime linear systems is considered. New sufficient conditions for stability of fractional positive descriptor linear systems are established. The efficiency of the new stability conditions are demonstrated on numerical examples of fractional continuous-time and discrete-time linear systems.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID
Andrzej Ruszewski
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The asymptotic stability of the convex linear combination of continuous-time and discretetime linear systems is considered. Using the Gershgorin theorem it is shown that the convex linear combination of the linear asymptotically stable continuous-time and discretetime linear systems is also asymptotically stable. It is shown that the above thesis is also valid (even simpler) for positive linear systems.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty ofElectrical Engineering, Wiejska 45D, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Floquet-Lyapunov transformation is extended to fractional discrete-time linear systems with periodic parameters. A procedure for computation of the transformation is proposed and illustrated by a numerical example.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID
Andrzej Ruszewski
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering,Wiejska 45D, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work, we present optimal control formulation and numerical algorithm for fractional order discrete time singular system (DTSS) for fixed terminal state and fixed terminal time endpoint condition. The performance index (PI) is in quadratic form, and the system dynamics is in the sense of Riemann-Liouville fractional derivative (RLFD). A coordinate transformation is used to convert the fractional-order DTSS into its equivalent non-singular form, and then the optimal control problem (OCP) is formulated. The Hamiltonian technique is used to derive the necessary conditions. A solution algorithm is presented for solving the OCP. To validate the formulation and the solution algorithm, an example for fixed terminal state and fixed terminal time case is presented.
Go to article

Bibliography

[1] G.W. Leibniz and C.I. Gerhardt: Mathematische Schriften. Hildesheim, G. Olms, 1962.
[2] I. Podlubny: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. 1st edition, 198. San Diego, Academic Press, 1998.
[3] J.A. Tenreiro Machado et al.: Some applications of fractional calculus in engineering. Mathematical Problems in Engineering, 2010, (2009), p. e639801, DOI: 10.1155/2010/639801.
[4] T. Yuvapriya, P. Lakshmi, and S. Rajendiran: Vibration control and performance analysis of full car active suspension system using fractional order terminal sliding mode controller. Archives of Control Sciences, 30(2), (2020), 295–324, DOI: 10.24425/ACS.2020.133501.
[5] D.S. Naidu: Optimal Control Systems. 1st edition, CRC Press, 2018.
[6] O.P. Agrawal: A general formulation and solution scheme for fractional optimal Control problems. Nonlinear Dynamics, 38(1), (2004), 323–337, DOI: 10.1007/s11071-004-3764-6.
[7] T. Chiranjeevi and R.K. Biswas: Formulation of optimal control problems of fractional dynamic systems with control constraints. Journal of Advanced Research in Dynamical and Control Systems, 10(3), (2018), 201–212.
[8] R.K. Biswas and S. Sen: Fractional optimal control problems with specified final time. Journal of Computational and Nonlinear Dynamics, 6(021009), (2010), DOI: 10.1115/1.4002508.
[9] R.K. Biswas and S. Sen: Free final time fractional optimal control problems. Journal of the Franklin Institute, 351(2), (2014), 941–951, DOI: 10.1016/j.jfranklin.2013.09.024.
[10] R.K. Biswas and S. Sen: Numerical method for solving fractional optimal control problems. In: Proceedings of the ASME IDETC/CIE Conference, (2010), 1205–120, DOI: 10.1115/DETC2009-87008.
[11] C. Tricaud and Y. Chen: An approximate method for numerically solving fractional order optimal control problems of general form. Computers & Mathematics with Applications, 59(5), (2010), 1644–1655, DOI: 10.1016/j.camwa.2009.08.006.
[12] Y. Ding, Z. Wang, and H. Ye: Optimal control of a fractional-order HIVimmune system with memory. IEEE Transactions on Control Systems Technology, 20(3), (2012), 763–769, DOI: 10.1109/TCST.2011.2153203.
[13] T. Chiranjeevi and R.K. Biswas: Closed-form solution of optimal control problem of a fractional order system. Journal of King Saud University – Science, 31(4), (2019), 1042–1047, DOI: 10.1016/j.jksus.2019.02.010.
[14] R. Dehghan and M. Keyanpour: A semidefinite programming approach for solving fractional optimal control problems. Optimization, 66(7), (2017), 1157–1176, DOI: 10.1080/02331934.2017.1316501.
[15] M. Dehghan, E.-A. Hamedi, and H. Khosravian-Arab: A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials. Journal of Vibration and Control, 22(6), (2016), 1547–1559, DOI: 10.1177/1077546314543727.
[16] S. Yousefi, A. Lotfi, and M. Dehghan: The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems. Journal of Vibration and Control, 17(13), (2011), 2059–2065, DOI: 10.1177/1077546311399950.
[17] M. Gomoyunov: Optimal control problems with a fixed terminal time in linear fractional-order systems. Archives of Control Sciences, 30(2), (2019), 295–324, DOI: 10.24425/acs.2020.135849.
[18] T. Chiranjeevi and R.K. Biswas: Discrete-time fractional optimal control. Mathematics, 5(2), (2017), DOI: 10.3390/math5020025.
[19] A. Dzielinski and P.M. Czyronis: Fixed final time and free final state optimal control problem for fractional dynamic systems – linear quadratic discrete-time case. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(3), (2013), 681–690, DOI: 10.2478/bpasts-2013-0072.
[20] T. Chiranjeevi, R.K. Biswas, and N.R. Babu: Effect of initialization on optimal control problem of fractional order discrete-time system. Journal of Interdisciplinary Mathematics, 23(1), (2020), 293–302, DOI: 10.1080/09720502.2020.1721924.
[21] P.M. Czyronis: Dynamic programming problem for fractional discretetime dynamic systems. Quadratic index of performance case. Circuits, Systems, and Signal Processing, 33(7), 2131–2149, DOI: 10.1007/s00034-014-9746-0.
[22] J.J. Trujillo and V.M. Ungureanu: Optimal control of discrete-time linear fractional order systems with multiplicative noise. International Journal of Control, 91(1), (2018), 57–69, DOI: 10.1080/00207179.2016.1266520.
[23] A. Ruszewski: Stability of discrete-time fractional linear systems with delays. Archives of Control Sciences, 29(3), (2019), 549–567, DOI: 10.24425/acs.2019.130205.
[24] L.Dai: Singular Control Systems. Berlin Heidelberg, Springer-Verlag, 1989, DOI: 10.1007/BFb0002475.
[25] R.K. Biswas and S. Sen: Fractional optimal control problems: a pseudostate- space approach. Journal of Vibration and Control, 17(7), (2011), 1034–1041, DOI: 10.1177/1077546310373618.
[26] R.K. Biswas and S. Sen: Fractional optimal control within Caputo’s derivative. In: Proceedings of the ASME IDETC/CIE Conference, (2012), 353– 360, DOI: 10.1115/DETC2011-48045.
[27] T. Chiranjeevi, R.K. Biswas, and C. Sethi: Optimal control of fractional order singular system. The International Journal of Electrical Engineering & Education, p. 0020720919833031, (2019), DOI: 10.1177/0020720919833031.
[28] T. Chiranjeevi and R.K. Biswas: Numerical approach to the fractional optimal control problem of continuous-time singular system. In: Advances in Electrical Control and Signal Systems, Singapore, (2020), 239–248, DOI: 10.1007/978-981-15-5262-5_16.
[29] T. Chiranjeevi and R.K. Biswas: Linear quadratic optimal control problem of fractional order continuous-time singular system. Procedia Computer Science, 171 (2020), 1261–1268, DOI: 10.1016/j.procs.2020.04.134.
[30] M.R.A. Moubarak, H.F. Ahmed, and O. Khorshi: Numerical solution of the optimal control for fractional order singular systems. Differential Equations and Dynamical Systems, 26(1), (2018), 279–291, DOI: 10.1007/s12591-016-0320-z.
[31] T. Chiranjeevi, R.K. Biswas, and S.K. Pandey: Fixed final time and fixed final state linear quadratic optimal control problem of fractional order singular system. In: Computing Algorithms with Applications in Engineering, Singapore, (2020), 285–294. DOI: 10.1007/978-981-15-2369-4_24.
[32] Muhafzan, A. Nazra, L. Yulianti, Zulakmal, and R. Revina: On LQ optimization problem subject to fractional order irregular singular systems. Archives of Control Sciences, 30(4), (2020), 745–756, DOI: 10.24425/acs.2020.135850.
[33] T. Chiranjeevi and R.K. Biswas: Computational method based on reflection operator for solving a class of fractional optimal control problem. Procedia Computer Science, 171 (2020), 2030–2039, DOI: 10.1016/j.procs.2020.04.218.
[34] T. Chiranjeevi and R.K. Biswas: Numerical simulation of fractional order optimal control problem. Journal of Statistics and Management Systems, 23(6), (2020), 1069–1077, DOI: 10.1080/09720510.2020.1800188.
[35] T. Kaczorek: Singular fractional continuous-time and discrete-time linear systems. Acta Mechanica et Automatica, 7(1), (2013), 26–33, DOI: 10.2478/ama-2013-0005.
[36] T. Kaczorek: Selected Problems of Fractional Systems Theory. Berlin Heidelberg, Springer-Verlag, 2011, DOI: 10.1007/978-3-642-20502-6.
[37] T. Kaczorek: Polynomial and Rational Matrices: Applications in Dynamical Systems Theory. London, Springer-Verlag, 2007, DOI: 10.1007/978-1-84628-605-6.
Go to article

Authors and Affiliations

Tirumalasetty Chiranjeevi
1
Raj Kumar Biswas
2
Ramesh Devarapalli
3
ORCID: ORCID
Naladi Ram Babu
2
Fausto Pedro García Márquez
4

  1. Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U. P., India
  2. Department of Electrical Engineering, National Institute of Technology, Silchar, India
  3. Department of Electrical Engineering, BIT Sindri, Dhanbad 828123, Jharkhand, India
  4. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

Controlling mechanical systems with position and velocity cascade loops is one of the most effective methods to operate this type of systems. However, when using low-rate sampling electronics, the implementation is not trivial and the resulting performance can be poor. This paper proposes effective tuning rules that only require establishing the bandwidth of the inner velocity loop and an estimation of the inertia of the mechanism. Since discrete-time mechatronic systems can also exhibit unstable behavior, several stability conditions are also derived. By using the proposed methodology, a P-PI control algorithm is developed for a desktop haptic device, obtaining good experimental performance with low sampling-rate electronics.

Go to article

Authors and Affiliations

Jorge Juan Gil
Iñaki Díaz
Download PDF Download RIS Download Bibtex

Abstract

Affine discrete-time control periodic systems are considered. The problem of global asymptotic stabilization of the zero equilibrium of the closed-loop system by state feedback is studied. It is assumed that the free dynamic system has the Lyapunov stable zero equilibrium. The method for constructing a damping control is extended from time-invariant systems to time varying periodic affine discrete-time systems. By using this approach, sufficient conditions for uniform global asymptotic stabilization for those systems are obtained. Examples of using the obtained results are presented.
Go to article

Authors and Affiliations

Adam Czornik
1
Evgenii Makarov
2
Michał Niezabitowski
3
Svetlana Popova
4
Vasilii Zaitsev
4

  1. Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
  2. Institute of Mathematics, National Academy of Sciencesof Belarus, 220072 Minsk, Belarus
  3. Faculty of Automatic Control, Electronics and Computer Science,Silesian University of Technology, 44-100 Gliwice, Poland
  4. Udmurt State University, 426034 Izhevsk, Russia
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a design procedure for observer-based controllers of discrete-time switched systems, in the presence of state’s time-delay, nonlinear terms, arbitrary switching signals, and affine parametric uncertainties. The proposed switched observer and the state- feedback controller are designed simultaneously using a set of linear matrix inequalities (LMIs). The stability analysis is performed based on an appropriate Lyapunov–Krasovskii functional with one switched expression, and in the meantime, the sufficient conditions for observer-based stabilization are developed. These conditions are formulated in the form of a feasibility test of a proposed bilinear matrix inequality (BMI) which is a non-convex problem. To make the problem easy to solve, the BMI is transformed into a set of LMIs using the singular value decomposition of output matrices. An important advantage of the proposed method is that the established sufficient conditions depend only on the upper bound of uncertain parameters. Furthermore, in the proposed method, an admissible upper bound for unknown nonlinear terms of the switched system may be calculated using a simple search algorithm. Finally, the efficiency of the proposed controller and the validity of the theoretical results are illustrated through a simulation example.

Go to article

Authors and Affiliations

N.A. Baleghi
M.H. Shafiei
Download PDF Download RIS Download Bibtex

Abstract

Consider the semilinear system defined by

x(i+1) = Ax(i) + f(x(i)), i≥ 0

x(0) = x0 ϵ ℜn

and the corresponding output signal y(i)=Cx(i), i ≥ 0, where A is a n x n matrix, C is a p x n matrix and f is a nonlinear function. An initial state x(0) is output admissible with respect to A, f, C and a constraint set Ω in ℜp if the output signal (y(i))i associated to our system satisfies the condition y(i) in Ω, for every integer i ≥ 0. The set of all possible such initial conditions is the maximal output admissible set Γ(Ω). In this paper we will define a new set that characterizes the maximal output set in various systems (controlled and uncontrolled systems). Therefore, we propose an algorithmic approach that permits to verify if such set is finitely determined or not. The case of discrete delayed systems is taken into consideration as well. To illustrate our work, we give various numerical simulations.

Go to article

Authors and Affiliations

Amine El Bhih
Youssef Benfatah
ORCID: ORCID
Mostafa Rachik
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the formulation and numerical simulation for linear quadratic optimal control problem (LQOCP) of free terminal state and fixed terminal time fractional order discrete time singular system (FODSS). System dynamics is expressed in terms of Riemann-Liouville fractional derivative (RLFD), and performance index (PI) in terms of state and costate. Because of its complexity, finding analytical and numerical solutions to singular system (SS) is difficult. As a result, we use coordinate transformation to convert FODSS to its corresponding fractional order discrete time nonsingular system (FODNSS). After that, we obtain the necessary conditions by employing a Hamiltonian approach. The relevant conditions are solved using the general solution approach. For the analysis of formulation and solution algorithm, a numerical example is illustrated. Results are obtained for various �� values. According to state of the art, this is the first time that a formulation and numerical simulation of free terminal state and fixed terminal time optimal control problem (OCP) of FODSS is presented.
Go to article

Authors and Affiliations

Tirumalasetty Chiranjeevi
1
Ramesh Devarapalli
2
ORCID: ORCID
Naladi Ram Babu
3
Kiran Babu Vakkapatla
4
R. Gowri Sankara Rao
5
Fausto Pedro Garcìa Màrquez
6

  1. Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U.P., India
  2. Department of EEE, Lendi Institute of Engineering and Technology, Vizianagaram-535005, India
  3. Department of EEE, Aditya Engineering College, Surampalem, Andhra Pradesh, India
  4. Lingayas Institute of Management and Technology Madalavarigudem, A.P., India
  5. Department of EEE, MVGR College of Engineering Vizianagaram, A.P., India
  6. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

Schemes are presented for calculating tuples of solutions of matrix polynomial equations using continued fractions. Despite the fact that the simplest matrix equations were solved in the second half of the 19th century, and the problem of multiplier decomposition was then deeply analysed, many tasks in this area have not yet been solved. Therefore, the construction of computer schemes for calculating the sequences of solutions is proposed in this work. The second-order matrix equations can be solved by a matrix chain function or iterative method. The results of the numerical experiment using the MatLab package for a given number of iterations are presented. A similar calculation is done for a symmetric square matrix equation of the 2nd order. Also, for the discrete (time) Riccati equation, as its analytical solution cannot be performed yet, we propose constructing its own special scheme of development of the solution in the matrix continued fraction. Next, matrix equations of the n-th order, matrix polynomial equations of the order of non-canonical form, and finally, the conditions for the termination of the iterative process in solving matrix equations by branched continued fractions and the criteria of convergence of matrix branching chain fractions to solutions are discussed.

Go to article

Authors and Affiliations

J. Dorożyński
M. Nedashkovskyy
Download PDF Download RIS Download Bibtex

Abstract

Most construction projects involve subcontracting some work packages. A subcontractor is employed on the basis of their bid as well as according to their availability. A viable schedule must account for resource availability constraints. These resources (e.g. crews, subcontractors) engage in many projects, so they become at the disposal for a new project only in certain periods. One of the key tasks of a planner is thus synchronizing the work of resources between concurrent projects. The paper presents a mathematical model of the problem of selecting subcontractors or general contractor’s crews for a time-constrained project that accounts for the availability of contractors, as well as for the cost of subcontracting works. The proposed mixed integer-binary linear programming model enables the user to perform the time/cost trade-off analysis.

Go to article

Authors and Affiliations

S. Biruk
P. Jaskowski
M. Krzemiński
Download PDF Download RIS Download Bibtex

Abstract

The Lagrange-Sylvester formula is applied to the computation of the solutions of state equations of fractional continuous-time and discrete-time linear systems. The solutions are given as finite sums with their numbers of components equal to the degrees of the minimal characteristics polynomials of state matrices of the systems. Procedures for computations of the solutions are given and illustrated by numerical examples of continuous-time and discrete-time fractional linear systems.
Go to article

Bibliography

  1.  A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, vol. 204, Elsevier Science Inc, New York, 2006.
  2.  P. Ostalczyk, Discrete Fractional Calculus, World Scientific, River Edgle, NJ, 2016.
  3.  I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  4.  T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer, Berlin, 2011.
  5.  T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer, Cham, 2015.
  6.  T. Kaczorek, “Analysis of positivity and stability of fractional discrete-time nonlinear systems”, Bull. Pol. Acad. Sci. Tech. Sci. 64(3), 491‒494 (2016).
  7.  T. Kaczorek, “Positive linear systems with different fractional orders”, Bull. Pol. Acad. Sci. Tech. Sci. 58(3), 453‒458 (2010).
  8.  T. Kaczorek, “Positive linear systems consisting of n subsystems with different fractional orders”, IEEE Trans. Circuits Syst. 58(7), 1203‒1210 (2011).
  9.  T. Kaczorek, “Positive fractional continuous-time linear systems with singular pencils”, Bull. Pol. Acad. Sci. Tech. Sci. 60(1), 9‒12 (2012).
  10.  T. Kaczorek, “Stability of fractional positive nonlinear systems”, Arch. Control Sci. 25(4), 491‒496 (2015).
  11.  A. Ruszewski, “Stability of discrete-time fractional linear systems with delays”, Arch. Control Sci. 29(3), 549‒567 (2019).
  12.  A. Ruszewski, “Practical and asymptotic stabilities for a class of delayed fractional discrete-time linear systems”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 509‒515 (2019).
  13.  Ł. Sajewski, “Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller”, Bull. Pol. Acad. Sci. Tech. Sci. 65(5), 709‒714 (2017).
  14.  Ł. Sajewski, “Decentralized stabilization of descriptor fractional positive continuous-time linear systems with delays”, 22nd Intern. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 2017, pp. 482‒487.
  15.  F.R. Gantmacher, The Theory of Matrices, London: Chelsea Pub. Comp., 1959.
  16.  T. Kaczorek, Vectors and Matrices in Automation and Electrotechnics, Scientific and Technical Publishing, WNT, Warsaw, 1998.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID

  1. Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The exponential decay of transient values in discrete-time nonlinear standard and fractional orders systems with linear positive linear part and positive feedbacks is investigated. Sufficient conditions for the exponential decay of transient values in this class of positive nonlinear systems are established. A procedure for computation of gains characterizing the class of nonlinear elements are given and illustrated on simple example.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID
Andrzej Ruszewski
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D,15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses weighted L2 gain performance switching controller design of discrete-time switched linear systems with average dwell time (ADT) scheme. Two kinds of methods, so called linearizing change-of-variables based method and controller variable elimination method, are considered for the output-feedback control with a supervisor enforcing a reset rule at each switching instant are considered respectively. Furthermore, some comparison between these two methods are also given.

Go to article

Authors and Affiliations

Wei He
Wei Xie
Weilin Wu
Langwen Zhagn
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses the problem of constrained pole placement in discrete-time linear systems. The design conditions are outlined in terms of linear matrix inequalities for the Dstable ellipse region in the complex Z plain. In addition, it is demonstrated that the D-stable circle region formulation is the special case of by this way formulated and solved pole placement problem. The proposed principle is enhanced for discrete-lime linear systems with polytopic uncertainties.

Go to article

Authors and Affiliations

Dušan Krokavec
Anna Filasová

This page uses 'cookies'. Learn more