Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper the modelling of thermo-mechanical effects in the process of friction welding of corundum ceramics and aluminium is presented. The modelling is performed by means of finite element method. The corundum ceramics contains 97% of Al2O3. The mechanical and temperature fields are considered as coupled fields. Simulation of loading of the elements bonded with the heat flux from friction heat on the contact surface is also shown. The heat flux was modified in the consecutive time increments of numerical solutions by changeable pressure on contact surface. Time depending temperature distribution in the bonded elements is also determined. The temperature distribution on the periphery of the cylindrical surfaces of the ceramics and Al was compared to the temperature measurements done with a thermovision camera. The results of the simulation were compared to those obtained from the tests performed by means of a friction welding machine

Go to article

Authors and Affiliations

Z. Lindemann
K. Skalski
W. Włosiński
J. Zimmerman
Download PDF Download RIS Download Bibtex

Abstract

Complex structures used in various engineering applications are made up of simple structural members like beams, plates and shells. The fundamental frequency is absolutely essential in determining the response of these structural elements subjected to the dynamic loads. However, for short beams, one has to consider the effect of shear deformation and rotary inertia in order to evaluate their fundamental linear frequencies. In this paper, the authors developed a Coupled Displacement Field method where the number of undetermined coefficients 2n existing in the classical Rayleigh-Ritz method are reduced to n, which significantly simplifies the procedure to obtain the analytical solution. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. In this paper, the free vibration behaviour in terms of slenderness ratio and foundation parameters have been derived for the most practically used shear flexible uniform Timoshenko Hinged-Hinged, Clamped-Clamped beams resting on Pasternak foundation. The findings obtained by the present Coupled Displacement Field Method are compared with the existing literature wherever possible and the agreement is good.

Go to article

Bibliography

[1] C.F. Lü, C.W. Lim, and W.A. Yao. A new analytic symplectic elasticity approach for beams resting on Pasternak elastic foundations. Journal of Mechanics of Materials and Structures, 4(10):1741–1754, 2010. doi: 10.2140/jomms.2009.4.1741.
[2] C. Franciosi and A. Masi. Free vibrations of foundation beams on two-parameter elastic soil. Computers & Structures, 47(3):419–426, 1993. doi: 10.1016/0045-7949(93)90237-8.
[3] I. Caliò and A. Greco. Free vibrations of Timoshenko beam-columns on Pasternak foundations. Journal of Vibration and Control, 19(5):686–696, 2013. doi: 10.1177/1077546311433609.
[4] S. Lee, J.K. Kyu Jeong and J. Lee. Natural frequencies for flexural and torsional vibrations of beams on Pasternak foundation. Soils and Foundations, 54(6):1202–1211, 2014. doi: 10.1016/j.sandf.2014.11.013.
[5] M.A. De Rosa. Free vibrations of Timoshenko beams on two-parameter elastic foundation. Computers & Structures, 57(1):151–156, 1995. doi: 10.1016/0045-7949(94)00594-S.
[6] M.A. De Rosa and M.J. Maurizi. The influence of concentrated masses and Pasternak soil on the free vibrations of Euler beams—exact solution. Journal of Sound and Vibration, 212(4):573–581, 1998. doi: 10.1006/jsvi.1997.1424.
[7] M. Karkon and H. Karkon. New element formulation for free vibration analysis of Timoshenko beam on Pasternak elastic foundation. Asian Journal of Civil Engineering (BHRC), 17(4):427–442, 2016.
[8] K. Meera Saheb et al. Free vibration analysis of Timoshenko beams using Coupled Displacement Field Method. Journal of Structural Engineering, 34:233–236, 2007.
[9] M.T. Hassan and M. Nassar. Analysis of stressed Timoshenko beams on two parameter foundations. KSCE Journal of Civil Engineering, 19(1):173–179, 2015. doi: 10.1007/s12205-014-0278-8.
[10] N.D. Kien. Free vibration of prestress Timoshenko beams resting on elastic foundation. Vietnam Journal of Mechanics, 29(1):1–12, 2007. doi: 10.15625/0866-7136/29/1/5586.
[11] P. Obara. Vibrations and stability of Bernoulli-Euler and Timoshenko beams on two-parameter elastic foundation. Archives of Civil Engineering, 60(4):421–440, 2014. doi: 10.2478/ace-2014-0029.
[12] S.Y. Lee, Y.H. Kuo, and F.Y. Lin. Stability of a Timoshenko beam resting on a Winkler elastic foundation. Journal of Sound and Vibration, 153(2):193–202, 1992. doi: 10.1016/S0022-460X(05)80001-X.
[13] T.M. Wang and J.E. Stephens. Natural frequencies of Timoshenko beams on Pasternak foundations. Journal of Sound and Vibration, 51(2):149–155, 1977. doi: 10.1016/S0022-460X(77)80029-1.
[14] T.M. Wang and L.W. Gagnon. Vibrations of continuous Timoshenko beams on Winkler-Pasternak foundations. Journal of Sound and Vibration, 59(2):211–220, 1978. doi: 10.1016/0022-460X(78)90501-1.
[15] T. Yokoyama. Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations. Computers & Structures, 61(6):995–1007, 1996. doi: 10.1016/0045-7949(96)00107-1.
[16] T. Yokoyama. Parametric instability of Timoshenko beams resting on an elastic foundation. Computers & Structures, 28(2):207–216, 1988. doi: 10.1016/0045-7949(88)90041-7.
[17] W.Q. Chen, C.F. Lü, and Z.G. Bian. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28(10):877–890, 2004. doi: 10.1016/j.apm.2004.04.001.
Go to article

Authors and Affiliations

Korabathina Rajesh
1
Koppanati Meera Saheb
1

  1. Jawaharlal Nehru Technological University Kakinada, Andhra Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

The locally resonant phononic crystal (LRPC) composite double panel structure (DPS) made of a twodimensional periodic array of a two-component cylindrical LR pillar connected between the upper and lower composite plates is proposed. The plates are composed of two kinds of materials and periodically etched holes. In order to reveal the bandgap properties of structure theoretically, the band structures, displacement fields of eigenmodes and transmission power spectrums of corresponding 8 × 8 finite structure are calculated and displayed by using finite element method (FEM). Numerical results and further analysis demonstrate that if the excitation and response points are picked on different sides of the structure, a wide band gap with low starting frequency is opened, which can be treated as the coupling between dominant vibrations of pillars and plate modes. In addition, the influences of filled-in rubber, etched hole and viscidity of soft material on band gap are studied and understood with the help of “base-spring-mass” simplified model.

Go to article

Authors and Affiliations

Denghui Qian

This page uses 'cookies'. Learn more