Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The microstructures and mechanical properties of T92 martensitic steel/Super304 austenitic steel weld joints with three welding consumables were investigated. Three types of welding materials ERNiCr-3, ERNiCrCoMo-1and T-304H were utilized to obtain dissimilar welds by using gas tungsten arc weld (GTAW). The results show that heat affect zone (HAZ) of T92 steel consists of coarse-grained and fine-grained tempered martensites. The microstructures of joints produced from ERNiCrCoMo-1 consist of equiaxed dendrite and columnar dendrite grains, which are more complicated than that of ERNiCr-3. In the tensile tests, joints constructed from ERNiCrCoMo-1 and T-304H met the ASME standard. The highest fracture energy was observed in specimens with the welding material ERNiCrCoMo-1. Ni content in weld seam of ERNiCrCoMo-1 was highest, which was above 40%. In conclusion, the nickel alloy ERNiCrCoMo-1 was the most suitable welding material for joints produced from T92 martensitic steel/Super304 austenitic steel.

Go to article

Authors and Affiliations

Z. Liang
Y. Gui
Q. Zhao
Download PDF Download RIS Download Bibtex

Abstract

This paper outlines issues associated with gas-shielded braze welding of CU-ETP copper with austenitic steel X5CrNi18-10 (1.4301) using a consumable electrode. The possibilities for producing joints of this type using innovative low-energy welding methods are discussed. The paper provides an overview of the results of metallographic and mechanical (static shear test, microhardness) tests for braze welded joints made on an automated station using the Cold Metal Transfer (CMT) method. Significant differences in the structure and mechanical properties are indicated, resulting from the joint configuration and the type of shielding gas (argon, helium).

Go to article

Authors and Affiliations

T. Wojdat
ORCID: ORCID
P. Kustroń
A. Margielewska
M. Stachowicz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we have studied the evolution of morphology and brazing behavior of Ag-28Cu alloy filler processed by high energy ball milling. The milling of the powder mixture was carried out for 40 h. The structural and morphological analyses were performed by the X-ray diffraction and scanning electron microscopy. The melting temperature of the braze filler was determined by differential thermal analysis. The filler wetting properties were assessed from the spread area ratio measurements on various Ti substrates. The results indicate that the ball milling can effectively depress the filler melting point and enhance the brazeability. The milled powder mixture showed Ag(Cu) solid solution with a crystallite size of 174-68 nm after 40 h. It was shown that the high energy ball milling can be a potential method to develop low temperature brazing fillers for advanced microjoining applications.

Go to article

Authors and Affiliations

Ashutosh Sharma
ORCID: ORCID
Myoung Jin Chae
Byungmin Ahn
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effects of heat treatment on aluminum/steel structural transition joint (STJ) strength were analyzed with ram tensile tests to find the right welding conditions. Before ram tensile tests, the specimens were subjected to different heat treatments to simulate possible thermal conditions, which may occur during the welding of STJ to the steel side of ship construction. Temperatures were varied from 100°C to 500°C, and durations were changed between 5-25 minutes in the heat treatments. The results of the ram tensile tests indicated that tensile strength decreased above 300°C. Micro-hardness test and microstructure examination were conducted to understand behavior change during ram tensile tests. The investigation showed that precipitation of the secondary hard phases with aging at interface above 300°C, reduced the bonding between aluminum and steel materials, which lead to a decrease of strength, and also changed the mechanical behavior of the STJ during ram test from ductile to brittle fracture. If the temperature is below 500°C and the duration is under 15 minutes, the STJ strength value meets the standard requirement. Short and rapid welding could be suggested to reduce heat buildup during welding.
Go to article

Authors and Affiliations

Y. Palaci
1
ORCID: ORCID
M. Olgun
1

  1. Yildiz Technical University, Naval Arch. and Marine Eng. Dept, Besiktas , Istanbul, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this work, experiments were carried out to quantify the behaviour of friction stir welded (FSW) AA5082-AA7075 butt joints under tensile loading and completely reversed fatigue loading. Different samples were prepared to identify optimum tool rotational and travel speeds to produce FSW AA5082-AA7075 butt joints with the maximum fatigue life. ANOVA was performed, which confirmed that both tool speed and tool rotational speed affect the tensile strength of the weld. The samples exhibit a considerable difference in their fatigue life and tensile strength. This difference can be accounted to the presence of welding defects such as surface defects and porosity. S-N curve plotted for the sample shows a significantly high fatigue life at the lower stress ranges. Fracture surfaces were also analysed under scanning electron microscope (SEM). Study of the fracture surface of the sample that failed under fatigue loading showed that the surface was mainly divided in two zones. The first zone was the area of fatigue crack growth where each stress cycle, slowly and gradually, helped in the growth of the crack. The second zone was the region of fast fracture where the crack growth resulted in the failure of the joint instantaneously. The fracture surface study of the sample that failed under tensile loading showed that the mode of failure was ductile in nature.

Go to article

Authors and Affiliations

Gaurav Kumar
Rajeev Kumar
Ratnesh Kumar
Download PDF Download RIS Download Bibtex

Abstract

7075-T6 Al and AZ31B Mg dissimilar alloys were friction stir lap welded with or without a Zn filler, and the effect of heat input on the joint quality was systematically studied. The experimental and finite element simulation results displayed that the formation characteristics and microstructures of the joint with or without the Zn filler were significantly affected by the heat input. The tensile shear load of joint with or without the Zn filler increased first and then decreased with the decrease of the welding speed from 200 to 50 mm/min. Moreover, the peak temperature in the stir zone was significantly decreased by the Zn filler addition, and the high temperature zone narrowed along the plate thickness direction. These changes of heat input made that longer mixing region boundary length and larger effective lap width were attained as the Zn filler was used. In addition, due to the replacement of Al-Mg intermetallic compounds (IMCs) by Al-Mg-Zn and Mg-Zn IMCs which were less harmful to the joint, the tensile shear load of the joint with the Zn filler was obviously enhanced compared to that of the joint without the Zn filler at each welding speed. The maximum tensile shear load of 7.2 kN was obtained at the welding speed of 100 mm/min.
Go to article

Authors and Affiliations

Huaxia Zhao
1
ORCID: ORCID
Peng Gong
2
ORCID: ORCID
Shude Ji
2
ORCID: ORCID
Xue Gong
2
ORCID: ORCID

  1. AVIC Manufacturing Technology Institute, Beijing 100024, P. R. China
  2. Shenyang Aerospace University, College of Aerospace Engineering, Shenyang 110136, P. R. China
Download PDF Download RIS Download Bibtex

Abstract

Fusion welding of Ti-Cu is difficult because of big difference of melting points and formation of brittle intermetallic compounds. Friction stir welding is carried out by solid-state joining, thermo-mechanical stirring, and friction heat. Ti-Cu FSW dissimilar welding can supply a very sound joint area with a few intermetallic compounds. Optimized welding process conditions are essential to obtain suitable microstructure and mechanical properties of welded zones. Different welding speeds affect the evolution of microstructure and mechanical properties due to changes of input heat and internal stored deformation energy. The correlation of microstructure and mechanical properties of Ti-Cu welded zone according to welding speeds were investigated and analyzed. As the higher the welding speed, the lower the heat input and the lower the temperature rise. Ti-Cu 75 has the smallest grain size at 13.9 μm, but the optimum mechanical properties and the integrity of welding were shown in Ti-Cu 50.
Go to article

Authors and Affiliations

Yong-Jae Lee
1
ORCID: ORCID
Won-Ki Jeong
1
Seung-Jun Lee
2
Hidetoshi Fujii
3
Se Eun Shin
1
Dong-Geun Lee
1
ORCID: ORCID

  1. Sunchon National University, Department of Materials Science and Metallurgical Engineering, Suncheon, 57922, Republic of Korea
  2. Korea Polytechnic University, Department of Advanced Materials Engineering, Siheung, 15073, Republic of Korea
  3. Osaka University, Joining and Welding Research Institute, Osaka 567-0047, Japan
Download PDF Download RIS Download Bibtex

Abstract

Paper presents results of laser welding of dissimilar joints. Flange pipe joints of austenitic TP347-HFG and low carbon S235JR steels were performed. Possibility of laser girth welding of dissimilar joints was presented. Welding of dissimilar materials are complex phenomena, chemical composition of chromium and nickel base austenitic steel with carbon amount of 0.07%, comparing to low carbon steel with trace amount of chromium, nickel and with 0.17% of carbon are different, and affect on welding result. Amount of carbon and chromium have great effect on steel phase transformation and crystallization process, which affect on material hardenability and strength characteristic. In conventional GMA welding methods solidification process of different metals is controlled by use of a selected filler material, for creating buffer zone. The main advantages of laser welding over other methods is process without an additional material, nevertheless some application may require its use. Laser welding with additional material combines advantages of both methods. To carry out weld with high strength characteristic, without welding defects, selecting chemical composition of filler wire are required. Welding parameters was obtained using numerical simulation based on Finite Element Method (FEM). Joint properties was investigated using hardness test. Metallographic analysis of obtained weld was carried out using optical microscopy and energy dispersive spectroscopy (EDS) analysis.

Go to article

Authors and Affiliations

H. Danielewski
A. Skrzypczyk
K. Mulczyk
A. Zrak

This page uses 'cookies'. Learn more