Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 22
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The growth in the system load accompanied by an increase of power loss in the distribution system. Distributed generation (DG) is an important identity in the electric power sector that substantially overcomes power loss and voltage drop problems when it is coordinated with a location and size properly. In this study, the DG integration into the network is optimally distributed by considering the load conditions in different load models used to surmount the impact of load growth. There are five load models tested namely constant, residential, industrial, commercial and mixed loads. The growth of the electrical load is modeled for the base year up to the fifth year as a short-term plan. Minimization of system power loss is taken as the main objective function considering voltage limits. Determination of the location and size of DG is optimally done by using the breeder genetic algorithm (BGA). The proposed studies were applied to the IEEE 30 radial distribution system with single and multiple placement DG scenarios. The results indicated that installing an optimal location and size DG could have a strong potential to reduce power loss and to secure future energy demand of load models. Also, commercial load requires the largest DG active injection power to maintain the voltage value within tolerable limits up to five years.

Go to article

Authors and Affiliations

Yuli Asmi Rahman
Salama Manjang
Yusran
Amil Ahmad Ilham
Download PDF Download RIS Download Bibtex

Abstract

The development of a distributed generation will influence the structure of the power transmission and distribution network. Distributed sources have lower power and therefore the lines of lower voltage are used. Therefore, the electric field intensity near such lines is lower. On the other hand magnetic field intensity may prove essential. The main aim of the paper is to present a method estimating the “ballast” of the natural environment at 50 Hz electric and magnetic fields in the power system, with distributed and centralized generation in real operating conditions.

Go to article

Authors and Affiliations

Michał Zeńczak
Download PDF Download RIS Download Bibtex

Abstract

Low voltage microgrids are autonomous subsystems, in which generation, storage and power and electrical energy consumption appear. In the paper the main attention has been paid to the voltage stability issue in low voltage microgrid for different variants of its operation. In the introduction a notion of microgrid has been presented, and also the issue of influence of active and reactive power balance on node voltage level has been described. Then description of voltage stability issue has been presented. The conditions of voltage stability and indicators used to determine voltage stability margin in the microgrid have been described. Description of the low voltage test microgrid, as well as research methodology along with definition of considered variants of its operation have been presented further. The results of exemplary calculations carried out for the daily changes in node load of the active and reactive power, i.e. the voltage and the voltage stability margin indexes in nodes have been presented. Furthermore, the changes of voltage stability margin indexes depending on the variant of the microgrid operation have been presented. Summary and formulation of conclusions related to the issue of voltage stability in microgrids have been included at the end of the paper.
Go to article

Authors and Affiliations

Mirosław Parol
Łukasz Rokicki
Download PDF Download RIS Download Bibtex

Abstract

Currently, the distribution system has been adapted to include a variety of Distributed Energy Resources (DERs). Maximum benefits can be extracted from the distribution system with high penetration of DERs by transforming it into a sustainable, isolated microgrid. The key aspects to be addressed for this transformation are the determination of the slack bus and assurance of reliable supply to the prioritized loads even during contingency. This paper explores the possibilities of transforming the existing distribution system into a sustainable isolated network by determining the slack bus and the optimal locations and capacity of Distributed Generators (DGs) in the isolated network, taking into account the contingencies due to faults in the network. A combined sensitivity index is formulated to determine the most sensitive buses for DG placement. Further, the reliability based on the loss of load in the isolated system when a fault occurs is evaluated, and the modifications required in for reliability improvement are discussed. The supremacy of the transformed isolated network with distributed generators is comprehended by comparing the results from conventional IEEE 33-bus grid connected test system and modified IEEE 33-bus isolated test system having no interconnection with the main grid.

Go to article

Authors and Affiliations

R. Hari Kumar
N. Mayadevi
V.P. Mini
S. Ushakumari
Download PDF Download RIS Download Bibtex

Abstract

This study suggests a new algorithm based on a combination of fuzzy logic and genetic algorithm (GA) to improve voltage profile in a microgrid. The considered microgrid includes control variables such as onload tap changer (OLTC), active power output from distributed generators (DG) and reactive power output from feeder switched capacitors that are controlled in a microgrid controller (MGC) by communication links. The proposed method was used to obtain the optimum value of control variables to establish voltage stabilization in varying load condition as online. For establishing voltage stabilization at the microgrid, an objective function is defined and is tried to minimize it by control variables. The control variables were changed based on fuzzy logic and the GA was employed for finding the optimum shape of membership functions. In order to verify the proposed method, a 34 buses microgrid in varying load condition was analyzed and was compared with previous works.

Go to article

Authors and Affiliations

Mohammad Amin Jangjoo
Ali Reza Seifi
Download PDF Download RIS Download Bibtex

Abstract

The active distribution network (ADN) represents the future development of distribution networks, whether the islanding phenomenon occurs or not determines the control strategy adopted by the ADN. The best wavelet packet has a better time-frequency characteristic than traditional wavelet analysis in the different signal processing, because it can extract better and more information from the signal effectively. Based on wavelet packet energy and the neural network, the islanding phenomenon of the ADN can be detected. Firstly, the wavelet packet is used to decompose current and voltage signals of the public coupling point between the distributed photovoltaic (PV) system and power grid, and calculate the energy value of each decomposed frequency band. Secondly, the network is trained using the constructed energy characteristic matrix as a neural network learning sample. At last, in order to achieve the function of identification for islanding detection, lots of samples are trained in the neural network. Based on the actual circumstance of PV operation in the ADN, the MATLAB/SIMULINK simulation model of the ADN is established. After the simulation, there are good output results, which show that the method has the characteristics of high identification accuracy and strong generalization ability.

Go to article

Authors and Affiliations

Zhongmei Xi
Faqi Zhao
Xiangyang Zhao
Hong Peng
Chuanxin Xi
Download PDF Download RIS Download Bibtex

Abstract

The transformer-less grid connected inverters are gaining more popularity due to their high efficiency, very low ground leakage current and economic feasibility especially in photovoltaic systems. The major issue which surfaces these systems is that of common mode leakage current which arises due to the absence of an electrical transformer connected between the inverter and the utility grid. Several topologies have evolved to reduce the impact of common mode leakage current and a majority of them have succeeded in eliminating the impacts and have well kept them within the limits of grid standards. This paper compares and analyses the impact of the common mode leakage current for four popular inverter configurations through simulation of the topologies such as H5, H6, HERIC and FBZVR inverters.

Go to article

Authors and Affiliations

D. John Sundar
M. Senthil Kumaran
Download PDF Download RIS Download Bibtex

Abstract

An analysis of the power system functioning and the behaviors of the energy market participants allows the trends taking place within years to be identified, including these associated with the evolution of the electric energy and power demand profiles. The problems of balancing the peak power demand are of both a short and long term nature, which implies the need for changes in the electricity generation sector. Apart from the existing “silo-type” generation units, the construction of distributed energy sources implemented in the civic formula in the framework of self-sufficient energy communes and energy clusters is becoming increasingly important. Support for these programs is realized both at the legislative level, as well as within dedicated competitions and ministerial activities. The financial support carried out by the National Fund for Environmental Protection and Water Management and the Regional Operational Programs is also noticeable. One of the activities aimed at spreading the idea of clustering was the competition for certified energy clusters, conducted by the Ministry of Energy. The goal of the contest was the promotion and development of the distributed energy sector, which could be used for the improvement of energy security in the local manner and constitute a basis for the knowledge necessary in planning and developing the state’s energy policy. The paper presents a synthetic analysis of the results of the competition for a certified energy cluster from the perspective of planning and operational needs related to the functioning of the power system. Further, the information about the investment plans of new generation capacities, including their breakdown with respect to type, achievable power and costs has been provided. Also, the balancing of the demand for electric energy by own generation within the energy clusters has been characterized for three time perspectives

Go to article

Authors and Affiliations

Maciej Sołtysik
Download PDF Download RIS Download Bibtex

Abstract

In microgrid distribution generation (DG) sources are integrated parallelly for the economic and efficient operation of a power system. This integration of DG sources may cause many challenges in a microgrid. The islanding condition is termed a condition in which the DG sources in the microgrid continue to power the load even when the grid is cut off. This islanding situation must be identified as soon as possible to avoid the collapse of the microgrid. This work presents the hybrid islanding detection technique. This technique consists of both active and parametric estimation methods such as slip mode shift frequency (SMS) and exact signal parametric rotational invariance technique (ESPRIT), respectively. This technique will easily distinguish between islanding and non-islanding events even under very low power perturbations. The proposed method also has no power quality impact. The proposed method is tested with UL741 standard test conditions.
Go to article

Authors and Affiliations

S. Jayanthi
1
S. Arockia Edwin Xavier
2
ORCID: ORCID
P.S. Manoharan
2
ORCID: ORCID

  1. Sapthagiri College of Engineering, Periyanahali, Dharmapuri, India
  2. Thiagarajar College of Engineering, Madurai, India
Download PDF Download RIS Download Bibtex

Abstract

The conventional port distribution power system is being disrupted by increasing distributed generation (DG) levels based on integrated energy. Different new energy resources combine with conventional generation and energy storage to improve the reliability of the systems. Reliability assessment is one of the key indicators to measure the impact of the distributed generation units based on integrated energy. In this work, an analytical method to investigate the impacts of using solar, wind, energy storage system (ESS), combined cooling, heating and power (CCHP) system and commercial power on the reliability of the port distribution power system is improved, where the stochastic characteristics models of the major components of the new energy DG resources are based on Markov chain for assessment. The improved method is implemented on the IEEE 34 Node Test Feeder distribution power system to establish that new energy resources can be utilized to improve the reliability of the power system. The results obtained from the case studies have demonstrated efficient and robust performance. Moreover, the impacts of integrating DG units into the conventional port power system at proper locations and with appropriate capacities are analyzed in detail.
Go to article

Authors and Affiliations

Liang Fang
1
Xiao-Yan Xu
1
Jun Xia
2
Tomasz Tarasiuk
3

  1. Shanghai Maritime University, Shanghai, 201305, China
  2. Marine Design and Research Institute of China, Shanghai, 201305, China
  3. Gdynia Maritime University, ul. Morska 81/87, 81-225 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

In most production plants, waste heat is usually discharged into the environment, contributing to a reduction in the energy efficiency of industrial processes. This is often due to the low thermal parameters of the carriers in which this energy is contained, such as oils, water, exhaust gases or other post-process gases, which means that their use for electricity production in a conventional Rankine cycle may prove to be economically unprofitable. One of the technologies enabling the use of lowand medium-temperature waste heat carriers is the organic Rankine cycle (ORC) technology. The paper present results of calculations performed to evaluate potential electricity production in ORC using waste heat from a natural gas-fired glass melting furnace. The analysis was carried out assuming the use of a single-stage axial turbine, whose efficiency was estimated using correlations available in the literature. The calculations were carried out for three working fluids, namely hexamethyldisiloxane, dimethyl carbonate, and toluene for two scenarios, i.e. ORC system dedicated only to electricity production and ORC system working in cogeneration mode, where heat is obtain from cooling the condenser. In each of the considered cases, the ORC system achieves the net power output exceeding 300 kW (309 kW for megawatts in the cogenerative mode to 367 kW for toluene in the non-cogenerative mode), with an estimated turbine efficiency above 80%, in range of 80,75 to 83,78%. The efficiency of the ORC system, depending on the used working fluid and the adopted scenario, is in the range from 14.85 to 16.68%, achieving higher efficiency for the non-cogenerative work scenario.
Go to article

Bibliography

[1] Papapetrou M., Kosmadakis G., Cipollina A., La Commare U., Micale G.: Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng. 138(2018), 207–216.
[2] Forman C., Muritala I.K., Pardemann R., Meyer B.: Estimating the global waste heat potential. Renew. Sustain. Energ. Rev. 57(2016), 1568–1579.
[3] Szargut J., Ziebik A., KoziołJ., Kurpisz K., Majza E.: Industrial Waste Energy. Usage Rules. Devices. WNT, Warsaw 1993 (in Polish). [4] Tartiere T., Astolfi T.: A world overview of the organic Rankine cycle market. Energy Proced. 129(2017), 2–9.
[5] Tartiere T.: World overview of the organic Rankine cycle technology. https://orcworld- map.org/ (accessed: 18 July 2020).
[6] Da Lio L., Manente G., Branchini L., Lazzaretto A.: Predicting the optimum design of single stage axial expanders in orc systems: Is there a single efficiency map for different working fluids? Appl. Energ. 167(2016), 44–58.
[7] Elson A., Tidball R., Hampson A.: Waste heat to power market assessment. ICF International (2015). https://web.ornl.gov/sci/buildings/docs/ORNL%20TM-2014- 620%20Waste%20Heat%20to (accessed: 20 July 2020).
[8] Lu H.: Capturing the invisible resource: Analysis of waste heat potential in Chinese industry and policy options for waste heat to power generation. Lawrence Berkeley National Laboratory (Berkeley Lab.), 2015. https://china.lbl.gov/sites/ all/files/lbnl-179618.pdf (accessed: 08 Aug. 2020).
[9] Campana F., Bianchi M., Branchini L., De Pascale A., Peretto A., Baresi M., Fermi A., Rossetti N., Vescovo R.: ORC waste heat recovery in european energy intensive industries: Energy and ghg savings. Energ. Convers. Manage. 76(2013), 244–252.
[10] Klimaszewski P., Zaniewski D., Witanowski Ł., Suchocki T., Klonowicz P., Lampart P.: A case study of working fluid selection for a small-scale waste heat recovery ORC system. Arch. Thermodyn. 40(2019), 3, 159-180
[11] Mikielewicz D., Mikielewicz J.: Criteria for selection of working fluid in lowtemperature ORC. Chem. Process Eng. 37(2016), 3, 428–440.
[12] Sprouse III C., Depcik C.: Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Appl. Therm. Eng. 51(2013), 1–2, 711–722.
[13] Angelino G., di Paliano P.C.: Multicomponent working fluids for organic Rankine cycles (ORCs). Energy 23(1998), 6, 449–663.
[14] Preißinger M., Schwöbel J.A.H., Klamt A., Brüggemann D.: Multi-criteria evaluation of several million working fluids for waste heat recovery by means of Organic Rankine Cycle in passenger cars and heavy-duty trucks. Appl. Energ. 206(2017), 887–889.
[15] Ahmandi B., Golneshan A.A., Arasteh H., Karimipour A., Bach Q.: Energy and exergy analysis and optimization of a gas turbine cycle coupled by a bottoming organic Rankine cycle. J. Therm. Anal. Calorim. 141(2020), 495–510.
[16] Park D.W., Jeong E.S., Kim K.H., Bineesh K.V., Park S.W., Lee J.W.: Synthesis of dimethyl carbonate by transesterification of ethylene carbonate and methanol using quaternary ammonium salt catalysts. Stud. Surf. Sci. Catal. 159(2006), 329– 332.
[17] Therminol 66 Heat Transfer Fluid, Product description, https://www.therminol.com /product/71093438 (accessed: 22 Oct. 2020).
[18] Machi E., Astolfi M.: Organic Rankine Cycle (ORC) Power Systems, Technologies and Applications. Woodhead 2016.
[19] CHT Technika Chłodnicza Sp. z o.o., http://www.cht.server.pl/ (accessed 22 Apr. 2020).
[20] Van Rossum G., Drake F.L.: Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, 2009.
[21] Bell I.H., Wronski J., Quoilin S., Lemort V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53(2014), 6, 2498–2508.
[22] Virtanen P. et al.: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 17(2020), 261–272, https://rdcu.be/b08Wh (accessed: 22 Oct. 2020).
Go to article

Authors and Affiliations

Arkadiusz Mateusz Musiał
1 2
Łukasz Antczak
1
Łukasz Jedrzejewski
3
Piotr Klonowicz
3

  1. Marani Sp. z o.o., Szybowa 14c, 41-808 Zabrze, Poland
  2. Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
  3. Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a honey badger algorithm (HB) based on a modified backwardforward sweep power flow method to determine the optimal placement of droop-controlled dispatchable distributed generations (DDG) corresponding to their sizes in an autonomous microgrid (AMG). The objectives are to minimise active power loss while considering the reduction of reactive power loss and total bus voltage deviation, and the maximisation of the voltage stability index. The proposed HB algorithm has been tested on a modified IEEE 33-bus AMG under four scenarios of the load profile at 40%, 60%, 80%, and 100% of the rated load. The analysis of the results indicates that Scenario 4, where the HB algorithm is used to optimise droop gains, the positioning of DDGs, and their reference voltage magnitudes within a permissible range, is more effective in mitigating transmission line losses than the other scenarios. Specifically, the active and reactive power losses in Scenario 4 with the HB algorithm are only 0.184% and 0.271% of the total investigated load demands, respectively. Compared to the base scenario (rated load), Scenario 4 using the HB algorithm also reduces active and reactive power losses by 41.86% and 31.54%, respectively. Furthermore, the proposed HB algorithm outperforms the differential evolution algorithm when comparing power losses for scenarios at the total investigated load and the rated load. The results obtained demonstrate that the proposed algorithm is effective in reducing power losses for the problem of optimal placement and size of DDGs in the AMG.
Go to article

Authors and Affiliations

Tham X. Nguyen
1
ORCID: ORCID
Robert Lis
1
ORCID: ORCID

  1. Faculty of Electrical Engineering, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article concerns safety of power supply for the final consumers, especially its two comprising elements, which are generation adequacy and distribution system reliability. Generation adequacy has been defined with Loss of Load Probability (LOLP), Loss of Load Expectation (LOLE) and Energy Not Supplied (ENS) indices. Conclusions from generation adequacy forecast prepared by ENSTO-E for Poland compared with other European countries for the years 2020 and 2025 have been discussed along with the resulting threats. Interruptions in energy supply have been characterised by power discontinuity indicator SAIDI. Finally, a reliability and adequacy analysis have been performed for different scenarios of the Polish power system operation in order to assess possibilities of using distributed generation as a backup power source. Based on a simulation model created using the DIgSILENT Power Factory software, the reliability and adequacy calculations have been performed with the probabilistic non-sequential Monte Carlo method and they are followed by a discussion of the obtained results.

Go to article

Authors and Affiliations

Jerzy Andruszkiewicz
Józef Lorenc
Agnieszka Weychan
Download PDF Download RIS Download Bibtex

Abstract

The loss of power and voltage can affect distribution networks that have a significant number of distributed power resources and electric vehicles. The present study focuses on a hybrid method to model multi-objective coordination optimisation problems for dis- tributed power generation and charging and discharging of electric vehicles in a distribution system. An improved simulated annealing based particle swarm optimisation (SAPSO) algorithm is employed to solve the proposed multi-objective optimisation problem with two objective functions including the minimal power loss index and minimal voltage deviation index. The proposed method is simulated on IEEE 33-node distribution systems and IEEE-118 nodes large scale distribution systems to demonstrate the performance and effectiveness of the technique. The simulation results indicate that the power loss and node voltage deviation are significantly reduced via the coordination optimisation of the power of distributed generations and charging and discharging power of electric vehicles.With the methodology supposed in this paper, thousands of EVs can be accessed to the distribution network in a slow charging mode.

Go to article

Authors and Affiliations

Huiling Tang
Jiekang Wu
Download PDF Download RIS Download Bibtex

Abstract

As the capacity and scale of distribution networks continue to expand, and distributed generation technology is increasingly mature, the traditional fault location is no longer applicable to an active distribution network and "two-way" power flow structure. In this paper, a fault location method based on Karrenbauer transform and support vector machine regression (SVR) is proposed. Firstly, according to the influence of Karrenbauer transformation on phase angle difference before and after section fault in a low-voltage active distribution network, the fault regions and types are inferred preliminarily. Then, in the feature extraction stage, combined with the characteristics of distribution network fault mechanism, the fault feature sample set is established by using the phase angle difference of the Karrenbauer current. Finally, the fault category prediction model based on SVR was established to solve the problem of a single-phase mode transformation modulus and the indistinct identification of two-phase short circuits, then more accurate fault segments and categories were obtained. The proposed fault location method is simulated and verified by building a distribution network system model. The results show that compared with other methods in the field of fault detection, the fault location accuracy of the proposed method can reach 98.56%, which can enhance the robustness of rapid fault location.
Go to article

Authors and Affiliations

Siming Wang
1
Zhao Kaikai
1

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the design issue of effective damping of electromechanical swings in a medium voltage network with distributed generation by the use of a PSS2A type power system stabiliser is described. This stabiliser was installed in the generating unit with the highest rated power. Time constants of correction blocks, as well as the main gain, were determined by analyzing a single-machine system, generating unit – infinite bus. The time constants were calculated on the basis of the frequency-phase transfer functions both of the electromagnetic moment to the voltage regulator reference voltage and of the generator voltage to the voltage regulator reference voltage, under the assumption of an infinite and real value of the generating unit inertia time constant for various initial generator loads. The main stabiliser gain was calculated by analyzing the position, on the complex plane, of eigenvalues of the state matrix of the single-machine system, linearised around a steady operating point, at the changed value of this gain.
Go to article

Bibliography

[1] He P., Qi P., Ji Y., Li Z., Dynamic interactions stability analysis of hybrid renewable energy system with SSSC, Archives of Electrical Engineering, vol. 70, no. 2, pp. 445–462 (2021), DOI: 10.24425/aee.2021.136995.
[2] Su M., Dong H., Liu K., Zou W., Subsynchronous oscillation and its mitigation of VSC-MTDC with doubly-fed induction generator-based wind farm integration, Archives of Electrical Engineering, vol. 70, no. 1, pp. 53–72 (2021), DOI: 10.24425/aee.2021.136052.
[3] Nocon A., Electromechanical transient states of distributed sources operating within power system, Wydawnictwo Politechniki Slaskiej, Gliwice (2019).
[4] Tsourakis G., Nanou S., Vournas C.A., Power System Stabilizer for Variable-Speed Wind Generators, IFAC Proceedings Volumes, vol. 44, iss. 1, pp. 11713–11719 (2011), DOI: 10.3182/20110828-6-IT-1002.03437.
[5] Tuttokmagi O., Kaygusuz A., Transient Stability Analysis of a Power System with Distributed Generation Penetration, Proceedings of the 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), Istanbul, Turkey, pp. 154–158 (2019), DOI: 10.1109/SGCF.2019.8782325.
[6] Lubosny Z., Dual Input Quasi-Optimal PSS for Generating Unit with Static Excitation System, IFAC Proceedings Volumes, vol. 39, iss. 7, pp. 267–272 (2006).
[7] IEEE STd 421.5, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies (2016).
[8] Kundur P., Power System Stability and Control, McGraw-Hill, Inc. (1994).
[9] Machowski J., Lubosny Z., Bialek J., Bamby J.R., Power Systems Dynamics. Stability and Control, J. Wiley & Sons, Chichester, New York (2020).
[10] Paszek S., Nocon A., Optimisation and Polyoptimisation of Power System Stabilizer Parameters, Lambert, Saarbrücken (2014).
[11] Paszek S., Nocon A., Parameter polyoptimization of PSS2A power system stabilizers operating in a multi-machine power system including the uncertainty of model parameters, Applied Mathematics and Computation, vol. 267, pp. 750–757 (2015), DOI: 10.1016/j.amc.2014.12.013.
[12] Izdebski M., The verification of acceptance requirements for voltage regulators of synchronous generators (in Polish), PhD Thesis, Gdansk University of Technology, Faculty of Electrical and Control Engineering (2019).
[13] De Mello F.P., Concordia Ch., Concepts of synchronous machine stability as affected by excitation control, IEEE Trans. on Power Systems, vol. PAS-88, iss. 4, pp. 316–329 (1980).
[14] Gibbard M.J., Co-ordinated design of multimachine power system stabilisers based on damping torque concepts, IEE Proceedings, vol. 135, Pt. C, no. 4, pp. 276–284 (1988).
[15] Paszek S., Bobon A., Berhausen S., Majka Ł., Nocon A., Pruski P., Synchronous generators and excitation systems operating in a power system. Measurements methods and modeling, Monograph, series: Lecture Notes in Electrical Engineering, vol. 631, Springer, Cham (2020).
[16] North American Electric Reliability Corporation (NERC), Reliability Guideline Power Plant Model Verification and Testing for Synchronous Machines (July 2018).
[17] Western Electricity Coordinating Council,WECC Power System Stabilizer Tuning Guidelines, available online: http://www.wecc.biz, accessed 16.02.2022.
[18] Western Electricity Coordinating Council, WECC Power System Stabilizer Design and Performance, available online: http://www.wecc.biz, accessed 16.02.2022.
[19] IEEE Committee Report, Dynamic Models for Steam and Hydro Turbines in Power System Studies, IEEE Trans. on Power Apparatus and Systems, vol. PAS-92, no. 6, pp. 1904–1915 (1973).
[20] Mathworks, Inc., Optimization Toolbox Documentation, available online: https://www.mathworks.com/help/optim/index.html, accessed 16.02.2022.
[21] Yongli Z., Chengxi L., Liangzhong Y., A Faster Estimation Method for Electromechanical Oscillation Frequencies, IEEE Trans. on Power Systems, vol. 34, no. 4, pp. 3280–3282 (2019), DOI: 10.1109/TPWRS.2019.2914855.
[22] Power Technologies, a Division of S&W Consultants Inc., Program PSS/E application guide, Siemens Power Technologies Inc. (2002).
Go to article

Authors and Affiliations

Stefan Paszek
1
ORCID: ORCID
Adrian Nocoń
1
ORCID: ORCID
Piotr Pruski
1
ORCID: ORCID

  1. Department of Electrical Engineering and Computer Science, Silesian University of Technology, Akademicka 10 str., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Distributed generation is an issue intensively studied in recent years. It concerns, among others protection systems of distributed generation units connected to electric power grids. The main goal of this paper is to present the issue of functional reliability of selected passive loss of mains (LoM) protection systems, i.e. methods of detecting island operation in distribution power grids, which are implemented in PV inverters installed in sample MV and LV grids, typical for Polish conditions. First, different methods of detecting island operation have been distinguished and shortly characterized. Some problems concerning their action have also been presented. Then commonly used passive methods of island grid operation detection have been described. Next sample distribution grid has been presented and chosen disturbances modelled in the grid to test mentioned passive methods have been defined. For each of the determined type of disturbance the dynamic simulation has been carried out, as well as voltage and frequency plots for two selected RES nodes have been recorded and observed. All considered passive methods of island grid operation detection have been implemented in a Matlab/Simulink environment. Models of RoCoF, U/OVP and U/ OFP algorithms have been presented in diagrams. Then, results of carried out extensive studies have been shown in tables and discussed. The results are a consequence of a realized research project concerning electric grids in rural areas. Summary, final conclusions, and future research possibilities constitute the last part of the paper. The conclusions are mainly concentrated on evaluation of action of passive methods of island operation detection as well as possibility of using the methods in Polish conditions, particularly in rural distribution grids.

Go to article

Authors and Affiliations

M. Parol
M. Połecki
Download PDF Download RIS Download Bibtex

Abstract

Hybrid Power Sources/Systems (HPS) are generally treated as local prosumer supplies. The paper presents a new approach to the strategy of electricity contracting from HPS, considering hybrid systems as a new type of quasi-centrally dispatched power units operating in Polish market conditions. The possibilities of contracting electricity from HPS, consisting of three electricity generation technologies: biogas plant, wind power plant and solar power plant, are presented. The opportunity to obtain additional income from the electricity trading on the balancing market was used. Proposals for a new mathematical description of HPS topology were also presented, including a feasibility function, which can be used for technical and economic analyses. The obtained results can be used as a direction of development in the field of optimization of hybrid source operation in cooperation with the power grid. Based on the conducted analyses, it can be observed that electricity sales contracts concluded for each hour of the day may bring additional profit for the investor. However, the strong dependence of the proposed strategy on the situation on the balancing market or other local electricity markets similar in their operations should be emphasized.

Go to article

Authors and Affiliations

P. Marchel
J. Paska
K. Pawlak
K. Zagrajek
Download PDF Download RIS Download Bibtex

Abstract

Recently, interest in incorporating distributed generators (DGs) into electrical distribution networks has significantly increased throughout the globe due to the technological advancements that have led to lowering the cost of electricity, reducing power losses, enhancing power system reliability, and improving the voltage profile. These benefits can be maximized if the optimal allocation and sizing of DGs into a radial distribution system (RDS) are properly designed and developed. Getting the optimal location and size of DG units to be installed into an existing RDS depends on the various constraints, which are sometimes overlapping or contradicting. In the last decade, meta-heuristic search and optimization algorithms have been frequently developed to handle the constraints and obtain the optimal DG location and size. This paper proposes an efficient optimization technique to optimally allocate multiple DG units into a RDS. The proposed optimization method considers the integration of solar photovoltaic (PV) based DG units in power distribution networks. It is based on multi-objective function (MOF) that aims to maximize the net saving level (NSL), voltage deviation level (VDL), active power loss level (APLL), environmental pollution reduction level (EPRL), and short circuit level (SCL). The proposed algorithms using various strategies of inertia weight particle swarm optimization (PSO) are applied on the standard IEEE 69-bus system and a real 205-bus Algerian distribution system. The proposed approach and design of such a complicated multi-objective functions are ultimately to make considerable improvements in the technical, economic, and environmental aspects of power distribution networks. It was found that EIW-PSO is the best applied algorithm as it achieves the maximum targets on various quantities; it gives 75.8359%, 28.9642%, and 64.2829% for the APLL, EPRL, and VDL, respectively, with DG units’ installation in the IEEE 69-bus test system. For the same number of DG units, EIW-PSO gives remarkable improved performance with the Adrar City 205-bus test system; numerically, it shows 72.3080%, 22.2027%, and 63.6963% for the APLL, EPRL, and VDL, respectively. The simulation results of this study prove that the proposed algorithms exhibit higher capability and efficiency in fixing the optimum DG settings.
Go to article

Authors and Affiliations

Mohamed Zellagui
1
ORCID: ORCID
Adel Lasmari
2
ORCID: ORCID
Ali H. Kasem Alaboudy
3
ORCID: ORCID
Samir Settoul
2
ORCID: ORCID
Heba Ahmed Hassan
4
ORCID: ORCID

  1. Department of Electrical Engineering, Faculty of Technology, University of Batna 2, Algeria
  2. Department of Electrotechnic, Faculty of Technology, Mentouri University of Constantine, Algeria
  3. Electrical Department, Faculty of Technology and Education, Suez University, Egypt
  4. Electrical Power Engineering Department, Faculty of Engineering, Cairo University, Egypt
Download PDF Download RIS Download Bibtex

Abstract

In order to optimise the operation state of the distribution network in the presence of distributed generation (DG), to reduce network loss, balance load and improve power quality in the distribution system, a multi-objective fruit fly optimisation algorithm based on population Manhattan distance (pmdMOFOA) is presented. Firstly, the global and local exploration abilities of a fruit fly optimisation algorithm (FOA) are balanced by combining population Manhattan distance ( PMD) and the dynamic step adjustment strategy to solve the problems of its weak local exploration ability and proneness to premature convergence. At the same time, Chebyshev chaotic mapping is introduced during position update of the fruit fly population to improve ability of fruit flies to escape the local optimum and avoid premature convergence. In addition, the external archive selection strategy is introduced to select the best individual in history to save in external archives according to the dominant relationship amongst individuals. The leader selection strategy, external archive update and maintenance strategy are proposed to generate a Pareto optimal solution set iteratively. Lastly, an optimal reconstruction scheme is determined by the fuzzy decision method. Compared with the standard FOA, the average convergence algebra of a pmdMOFOA is reduced by 44.58%. The distribution performance of non-dominated solutions of a pmdMOFOA, MOFOA, NSGA-III and MOPSO on the Pareto front is tested, and the results show that the pmdMOFOA has better diversity. Through the simulation and analysis of a typical IEEE 33-bus system with DG, load balance and voltage offset after reconfiguration are increased by 23.77% and 40.58%, respectively, and network loss is reduced by 57.22%, which verifies the effectiveness and efficiency of the proposed method.
Go to article

Bibliography

[1] Merlin A., Back H., Search for a minimal-loss operating spanning tree configuration in an urban power distribution system, Fifth Power Systems Computer Conference (PSCC), Cambridge, Britain, pp. 1–18 (1975).
[2] Kashem M.A., Ganapathy V., Jasmon G.B., Network reconfiguration for load balancing in distribution networks, IEE Proceedings-Generation Transmission and Distribution, vol. 146, no. 6, pp. 563–567 (1999).
[3] Liu Y.K., Li J., Wu L., Coordinated Optimal Network Reconfiguration and Voltage Regulator/DER Control for Unbalanced Distribution Systems, IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2912–2922 (2019).
[4] Ahmadi S., Vahidinasab V., Ghazizadeh M. et al., Co-optimising distribution network adequacy and security by simultaneous utilisation of network reconfiguration and distributed energy resources, IET Generation Transmission & Distribution, vol. 13, no. 20, pp. 4747–4755 (2019).
[5] Liu H.Q., Qu J.M., Shanshan Yang S.S. et al., Intelligent optimal dispatching of active distribution network using modified flower pollination algorithm, Archives of Electrical Engineering, vol. 69, no. 1, pp. 159–174 (2020).
[6] Rahman Y.A., Manjang S., Yusran et al., Distributed generation’s integration planning involving growth load models by means of genetic algorithm, Archives of Electrical Engineering, vol. 67, no. 3, pp. 667–682 (2018).
[7] Olamaei J., Niknam T., Gharehpetian G., Application of particle swarm optimisation for distribution feeder reconfiguration considering distributed generators, Applied Mathematics and Computation, vol. 201, no. 1, pp. 575–586 (2008).
[8] Tang H.L., Wu J., Multi-objective coordination optimisation method for DGs and EVs in distribution networks, Archives of Electrical Engineering, vol. 68, no. 1, pp. 15–32 (2019).
[9] Rao R.S., Ravindra K., Satish K. et al, Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation, IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 317–325 (2013).
[10] Ling F.H., Zhang J.H., Sun X.B. et al., The application based on improved FOA optimisation algorithm in distribution network reconfiguration, Electric Switchgear, vol. 57, no. 1, pp. 91–95 (2019).
[11] Singh D., Misra R.K., Multi-objective feeder reconfiguration in different tariff structures, IET Generation Transmission & Distribution, vol. 4, no. 8, pp. 974–988 (2010).
[12] Sun K.M., Chen Q., Zhao P., Genetic algorithm with mesh check for distribution network topology reconfiguration, Automation of Electric Power Systems, vol. 42, no. 11, pp. 64–71 (2018).
[13] Ganesh S., Kanimozhi R., Meta-heuristic technique for network reconfiguration in distribution system with photovoltaic and D-STATCOM, IET Generation, Transmission & Distribution, vol. 12, no. 20, pp. 4524–4535 (2018).
[14] Chen D.Y., Zhang X.X., Distribution network reconfiguration of distributed generation based on AMOPSO algorithm, Acta Energiae Solaris Sinica, vol. 38, no. 8, pp. 2195–2203 (2017).
[15] Li Z.K., Lu Q., Fu Y. et al., State split multi-objective dynamic programming algorithm for dynamic reconfiguration of active distribution network, Proceedings of the CSEE, vol. 39, no. 17, pp. 5025-5036 (2019).
[16] Ding Y., Wang F., Bin F. et al., Multi-objective distribution network reconfiguration based on game theory, Electric power automation equipment, vol. 39, no. 2, pp. 28–35 (2019).
[17] Li H.J., Zhang P.W., Guo H.D., Adaptive multi-objective particle swarm optimisation algorithm based on population Manhattan distance, Computer Integrated Manufacturing Systems, vol. 26, no. 4, pp. 1019–1032 (2020).
[18] Liao J.Q., Wang H., Wang X.P., Fruit fly optimisation algorithm with chaotic dynamical step factor, Transducer and Microsystem Technologies, vol. 38, no. 8, pp. 139–142 (2019).
[19] Marko M., Najdan V., Milica P. et al., Chaotic fruit fly optimisation algorithm, Knowledge-based systems, vol. 89, no. 11, pp. 446–458 (2015).
[20] Saffar A., Hooshmand R., Khodabakhshian A., A new fuzzy optimal reconfiguration of distribution systems for loss reduction and load balancing using ant colony search-based algorithm, Applied Soft Computing, vol. 11, no. 5, pp. 4021–4028 (2011).
[21] ZhaoY.L., Lu J.X.,Yan Q. et al., Research on 3D-U intelligent manufacturing cell facilities layout based on self-adapting multi-objective fruit fly optimisation algorithm, Computer Integrated Manufacturing Systems, vol. 8, no. 1, pp. 1–21 (2020).
[22] Deb K., Pratap A., Agarwal S. et al., A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197 (2002).
[23] Coello C.A.C., Pulido G.T., Lechuga M.S., Handling multiple objective with particle swarm optimisation, IEEE Transactions Evolutionary Computation, vol. 8, no. 3, pp. 256–279 (2004).
[24] Zitzler E., Deb K., Thiele L., Comparison of multi-objective evolutionary algorithms: empirical study, Evolutionary Computation, vol. 8, no. 8, pp. 173–195 (2000).
[25] Baran M.E., Wu F.F., Network reconfiguration in distribution systems for loss reduction and load balancing, IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1401–1407 (1989).
Go to article

Authors and Affiliations

Minan Tang
1
Kaiyue Zhang
1
Qianqian Wang
2
Haipeng Cheng
3
Shangmei Yang
1
ORCID: ORCID
Hanxiao Du
1

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China
  2. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, China
  3. CRRC Qingdao Sifang Co., Ltd. Qingdao, China

This page uses 'cookies'. Learn more