Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An intelligent boundary switch is a three-phase outdoor power distribution device equipped with a controller. It is installed at the boundary point on the medium voltage overhead distribution lines. It can automatically remove the single-phase-to-ground fault and isolation phase-to-phase short-circuit fault. Firstly, the structure of an intelligent boundary switch is studied, and then the fault detection principle is also investigated. The single-phase-to-ground fault and phase-to-phase short-circuit fault are studied respectively. A method using overcurrent to judge the short-circuit fault is presented. The characteristics of the single-phase-to-ground fault on an ungrounded distribution system and compositional grounded distribution system are analyzed. Based on these characteristics, a method using zero sequence current to detect the single-phase-to-ground fault is proposed. The research results of this paper give a reference for the specification and use of intelligent boundary switches.

Go to article

Authors and Affiliations

Ling Liu
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an evaluation of MV/LV power transformer damage risk due to the impact of ambient temperature at their operation location. It features a presentation of the method of evaluating the power structures’ reliability in the conditions of the structures’ variable durability and exposure values. Based on perennial observations of ambient temperature and failure rate of MV/LV transformers, it was demonstrated that temperature is a factor that causes damage or is jointly responsible for the damage caused in all of the devices’ other failures.
Go to article

Bibliography

[1] Bolzern P., Fronza G., Role of weather inputs in short-term forecasting of electric load, International Journal of Electrical Power and Energy Systems, vol. 8, iss. 1, pp. 42–46 (1986).
[2] Chojnacki A.Ł., Chojnacka K.J., Reliability of electric power distribution networks, Publishing House of the Kielce University of Technology (in Polish), Kielce (2018).
[3] Chojnacki A.Ł., Analysis of operational reliability of electric power distribution networks, Publishing House of the Kielce University of Technology (in Polish), Kielce (2013).
[4] Chojnacki A., Reliability parameters and properties of MV/LV transformers, Electrical Review (in Polish), no. 4, pp. 74–77 (2008).
[5] Collins S., Deane P., Gallachoir B., Pfenninger S., Staffell I., Impacts of Inter-annual Wind and Solar Variations on the European Power System, Joule, vol. 2, iss. 10, pp. 2076–2090 (2018), DOI: 10.1016/j.joule.2018.06.020.
[6] Johnson M., Gorospe G., Landry J., Schuster A., Review of mitigation technologies for terrestrial power grids against space weather effects, International Journal of Electrical Power and Energy Systems, vol. 82, pp. 382–391 (2016), DOI: 10.1016/j.ijepes.2016.02.049.
[7] Migdalski J., Reliability engineering – handbook, ATR Bydgoszcz i Zetom Warszawa (in Polish) (1992).
[8] Military Standardization Handbook. Reliability Prediction of Electronic Equipment, MIL-HDBK 217B. U.S. Government Printing Office, Washington (1974).
[9] Narimani A., Nourbakhsh G., Ledwich G.F.,Walker G.R., Optimum electricity purchase scheduling for aggregator storage in a reliability framework for rural distribution networks, International Journal of Electrical Power and Energy Systems, vol. 94, pp. 363–373 (2018), DOI: 10.1016/j.ijepes.2017.08.001.
[10] Paliwal N.K., Singh A.K., Singh N.K., Short-term Optimal Energy Management in Stand-alone Microgrid With Battery Energy Storage, Archives of Electrical Engineering, vol. 67, no. 3, pp. 499–513 (2018), DOI: 10.24425/123659.
[11] Panteli M., Pickering C.,Wilkinson S., Dawson R., Mancarella P., Power System Resilience to Extreme Weather: Fragility Modeling, Probabilistic Impact Assessment, and Adaptation Measures, IEEE Transactions on Power Systems, vol. 32, iss. 5, pp. 3747–3757 (2017), DOI: 10.1109/TPWRS.2016.2641463.
[12] PN-N-50191:1993 Terminology of electrics – Reliability, quality of service.
[13] Sousa B.J.O., Humayun M., Pihkala A., Lehtonen M.I., Three-layer seasonal reliability analysis in meshed overhead and underground subtransmission networks in the presence of co-generation, International Journal of Electrical Power and Energy Systems, vol. 63, pp. 555–564 (2014), DOI: 10.1016/j.ijepes.2014.06.026.
[14] Stobiecki A., Analysis of the reliability parameters of medium voltage distribution transformers, Doctoral dissertation (in Polish), Kielce (2006).
[15] Stobiecki A., Failures of 15/0.4 kV transformers in the power grid, Energetics (in Polish), no. 2, pp. 89–92 (2004).
Go to article

Authors and Affiliations

Andrzej Łukasz Chojnacki
1
ORCID: ORCID

  1. Department of Power Engineering, Power Electronics and Electrical Machines, Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Both the growing number of dispersed generation plants and storage systems

and the new roles and functions on the demand side (e.g. demand side management) are

making the operation (monitoring and control) of electrical grids more complex, especially

in distribution. This paper demonstrates how to integrate phasor measurements so that

state estimation in a distribution grid profits optimally from the high accuracy of PMUs.

Different measurement configurations consisting of conventional and synchronous mea-

surement units, each with different fault tolerances for the quality of the calculated system

state achieved, are analyzed and compared. Weighted least squares (WLS) algorithms for

conventional, linear and hybrid state estimation provide the mathematical method used in

this paper. A case study of an 18-bus test grid with real measured PMU data from a 110 kV

distribution grid demonstrates the improving of the system’s state variable’s quality by

using synchrophasors. The increased requirements, which are the prerequisite for the use

of PMUs in the distribution grid, are identified by extensively analyzing the inaccuracy of

measurement and subsequently employed to weight the measured quantities.

Go to article

Authors and Affiliations

Marc Richter
Ines Hauer
Przemysław Komarnicki
Download PDF Download RIS Download Bibtex

Abstract

The grid-tied inverter synchronizes with the network on the basis of the instantaneous voltage phase angle. This angle is computed by the so-called synchronization algorithms. During grid disturbances, it is estimated with a certain accuracy, which varies for different disturbances and depends on the choice of algorithm. The tests presented here determine how to make an optimal selection of the synchronization algorithm. The research methods used are modeling, simulation and analysis of the results obtained. One of the most important outcomes is the determination of the root-mean-square sync error and its dynamics denotation. The research conclusions should be of particular interest to designers of distributed energy systems with a large number of inverter energy sources.

Go to article

Authors and Affiliations

Wojciech Jarzyna
Dariusz Zieliński
K. Gopakumar
Download PDF Download RIS Download Bibtex

Abstract

Fault location, isolation and self-restoration (FLISR) automation is an essential component of smart grids concept. It consists of a high level of comprehensive automation and monitoring of the distribution grid improving the quality of energy supplied to customers. This paper presents an algorithm for decentralized FLISR architecture with peer-to-peer communication using IEC 61860 GOOSE messages. An analysis of short circuit detection was presented due to the method of the grid earthing system. The proposed automation model was built based on communication logic between configured intelligent electronic devices (IED) from ABB and Siemens. The laboratory tests were conducted in a half-loop grid model with a bilateral power supply (typical urban grid). The laboratory research concerned three locations of short circuits: between substation and section point, between two section points and between section point and normally open point (NOP). The logic implementation was developed using State Sequencer software offered by Test Universe.
Go to article

Authors and Affiliations

Paweł Bielenica
1
Joanna Widzińska
2
Artur Łukaszewski
2
ORCID: ORCID
Łukasz Nogal
2
ORCID: ORCID
Piotr Łukaszewski
2

  1. ENCO Sp. z o.o., Poste˛ pu 13, 02-676 Warsaw, Poland
  2. Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

This page uses 'cookies'. Learn more