Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 29
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Ultrasonic pulse echo technique was used to study cupric oxide (CuO) thin films. CuO thin films were prepared using sol gel technique. They were doped with Lithium (Li) (1%, 2% and 4%).

Thin films’ thickness (d) and band gap energy (Eg) were measured. In addition, elastic moduli (longitudinal (L), shear (G), bulk (K) and Young’s (E)) and Poisson’s ratio (v) were determined to estimate the microstructure properties of the prepared films.

The study ameliorated the used transducers to overcome their dead zone and beam scattering; wedges were developed. The results showed the effectiveness of these wedges. They enhanced transducers’ sensitivity by changing the dead zone, beam diameter, beam directivity and waves’ transmission.

Also, the study noted that Li doping caused the improvement of CuO thin films to be more useful in solar cell fabrication. Li-CuO thin films had narrower band gap. Thus, they acquired a high quantum yield for the excited carriers; also they gained more efficiency to absorb solar light.

Go to article

Authors and Affiliations

Barakat Mirham Abdallah Youssef
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with spectral and lasing characteristics of thulium-doped optical fibers fabricated by means of two doping techniques,
i.e. via a conventional solution-doping method and via a nanoparticle-doping method. The difference in fabrication was the application of a suspension of aluminum oxide nanoparticles of defined size instead of a conventional chloride-containing solution. Samples of thulium-doped silica fibers having nearly identical chemical composition and waveguiding properties were fabricated. The sample fabricated by means of the nanoparticle-doping method exhibited longer lifetime, reflecting other observations and the trend already observed with the fibers doped with erbium and aluminum nanoparticles. The fiber fabricated by means of the nanoparticle-doping method exhibited a lower lasing threshold (by ~20%) and higher slope efficiency (by ~5% rel.). All these observed differences are not extensive and deserve more in-depth research; they may imply a positive influence of the nanoparticle approach on properties of rare-earth-doped fibers for fiber lasers.

Go to article

Authors and Affiliations

I. Kasik
M. Kamradek
J. Aubrecht
P. Peterka
O. Podrazky
J. Cajzl
J. Mrazek
P. Honzatko
Download PDF Download RIS Download Bibtex

Abstract

The results of activity studies of four catalysts in methanol synthesis have been presented. A standard industrial catalyst TMC-3/1 was compared with two methanol catalysts promoted by the addition of magnesium and one promoted by zirconium. The kinetic analysis of the experimental results shows that the Cu/Zn/Al/Mg/1 catalyst was the least active. Although TMC-3/1 and Cu/Zn/Al/Mg/2 catalysts were characterised by a higher activity, the most active catalyst system was Cu/Zn/Al/Zr. The activity calculated for zirconium doped catalyst under operating conditions was approximately 30% higher that of TMC-3/1catalyst. The experimental data were used to identify the rate equations of two types - one purely empirical power rate equation and the other one - the Vanden Bussche & Froment kinetic model of methanol synthesis. The Cu/ZnO/Al2O3 catalyst modified with zirconium has the highest application potential in methanol synthesis.

Go to article

Authors and Affiliations

Stanisław Ledakowicz
Lech Nowicki
Jerzy Petera
Jarosław Nizioł
Paweł Kowalik
Andrzej Gołębiowski
Download PDF Download RIS Download Bibtex

Abstract

In this work studies ofM OVPE growth of InAlGaAs/AlGaAs/GaAs heterostructures are presented. The HRXRD and SIMS measurements indicate the high structural and optical properties as well as high uniformity oft hickness and composition ofI nAlGaAs quantum wells. This work is the .rst step towards elaboration oft he technology oft he strained InAlGaAs/GaAs heterostructures for advanced optoelectronic devices working in the visible part oft he spectrum. The investigations ofSi (n-type), Zn (p-type) .-doped GaAs epilayers and centre Si-.-doped InxGa1-xAs single quantum well (SQW) are presented. The .-doping layer was formed by SiH4 or DEZn introduction during the growth interruption. The electrical and optical properties oft he obtained structures were examined using C-V measurement, EC-V electrochemical pro.ler, Raman spectroscopy (RS), photore.ectance (PR) and photocurrent (PC) spectroscopies. Technology oft hick GaN layers grown on sapphire by HVPE is very promising as a part off reestanding GaN substrates manufacturing. Further works will be focused on the optimisation of growth, separating layers from substrates and surface polishing. The in.uence oft he growth parameters on the properties of( Ga, Al)N/Al2O3 and Mg dopant incorporation was studied.

Go to article

Authors and Affiliations

B. Boratyński
R. Korbutowicz
B. Paszkiewicz
R. Paszkiewicz
D. Pucicki
D. Radziewicz
B. Ściana
M. Tłaczała
Download PDF Download RIS Download Bibtex

Abstract

Introduction: The history of using performance-enhancing substances (PES) is long and it goes back to ancient times. At present, PES are employed at all levels of sport competition, starting from Olympic level contestants to individuals recreationally involved in various sports disciplines.

Purpose: The objective of the study was examining the views on doping in sports in a group of physicians, together with evaluating the frequency of their contacts with this phenomenon, in their professional activities.

Methods: The investigation was carried out using a validated questionnaire developed by the authors. Questionnaire included 34 questions divided into 6 sections. In total, 257 individuals participated in the study. The percentage of answers was 75.81%.

Results: Among the responders, 96.50% believed that using PES by sports competitors represented unethical behavior. 42% participants declared that they met doping problem during their professional career. Almost one-third of the physicians (28.79%) declared that during their work, they consulted patient suffering from adverse side eff ects resulting from using PES.

Conclusions: In Poland, physicians regard using PES as unethical behavior. They believe that a health care system professional should participate in counteracting doping in sports. Physicians — regardless of their specialty — are also exposed to PES-related problems in their professional work. In view of the above facts and the consistently increasing popularity of PES, extending the knowledge in this field among physicians seems to be of importance to allow for their offering better medical services to their patients.

Go to article

Authors and Affiliations

Renata Domagała-Rodacka
Tomasz Rodacki
Danuta Owczarek
Dorota Cibor
Paweł Zagrodzki
Download PDF Download RIS Download Bibtex

Abstract

Y and V codoped SrBi 2Nb 2O 9 ceramics, which have been characterized by XRD, FTIR and SEM techniques, were prepared through molten salt using NaCl-KCl medium. Through X-ray diffraction analysis, all prepared samples were matched by undoped SrBi 2Nb 2O 9. The lattice parameters do not depend on the amount of dopants. Under the optimized experimental conditions, the compounds are composed of small crystallites of varying size and orientation, resulting in many micros train defects. FTIR spectra revealed that the dopant promotes a slight decrease in the 612 cm –1 band. A plate-like morphology was revealed by scanning electron microscopy, while Nyquist plots indicate non-Debye relaxation for all compounds. V and Y were incorporated into SrBi 2Nb 2O 9 lattice in order to reduce dielectric loss tangent. Thus, the codoping increases the of SrB 1.9Y 0.1Nb 1.95V 0.05O 9 (Y0.1V0.05) ceramic whereas, they were significantly decreased in the case of SrBi 1.8Y 0.2Nb 2O 9 (Y0.2) ceramic. Y0.1V0.05 sample makes up the highest efficient charge transfer, followed by Y0.2 sample representing the lowest.
Go to article

Authors and Affiliations

Mohamed Afqir
1
ORCID: ORCID
Mohamed Elaatmani
1
ORCID: ORCID
Abdelouahad Zegzouti
1
ORCID: ORCID
Nabiha Tahiri
1
Mohamed Daoud
1
ORCID: ORCID

  1. Université Cadi Ayyad, Faculté des Sciences Semlalia, Laboratoire de Sciences des Matériaux et Optimisation des Procédés, Marrakech, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the present study was to extract high added value titanium from Ti-doped Seaside Magnetite Concentrated (Ti-SMC), which has a high potential reserve for Ti-Fe with 4–6% Ti, 50–52% F e, 1–2% A l, and 1–2% Mg content by applying innovative, economical, environmentally friendly methods. A gitaion HCl leaching was applied to the Ti-SMC sample at different leaching temperatures (25–50–75–90°C), at acid concentrations (8–10–12 N ), and leaching times (30–60– –120–240 min) in atmospheric conditions. A fter the leaching experiments under the indicated conditions, the optimization of the leaching experiments was determined with Ti% recovery that dissoluted by elemental analysis, and the titanium recovery values reached the maximum value with increased leaching time at 50°C and 10 N HCl acid concentration; and 65% Ti was recovered in 30 minutes, 67% in 60 minutes, 74% in 120 minutes, and 82% Ti in 240 minutes. F or Ti-SMC, leaching was carried out at 50°C leaching temperature and at 10 N acid concentration for 480 minutes, and a 92% Ti extraction value was achieved. A ccording to the extraction results of all leaching experiments, the leaching temperature of 50°C, the acid concentration of 10 N , and the leaching time of 480 minutes were determined as the optimum conditions. In this study, it was emphasized that this resource is a potential reserve, which has not been used as a source before, with 92% Ti extraction with atmospheric acid leaching, which is an environmentally friendly method, consuming less energy than Ti-SMC, which is difficult and expensive to extract with traditional methods.
Go to article

Authors and Affiliations

Elif Uzun Kart
1
ORCID: ORCID
Mümin Kırman
1
ORCID: ORCID

  1. Marmara University, İstanbul, Turkey
Download PDF Download RIS Download Bibtex

Abstract

A n-type semiconductor ZnO has high transmittance features, excellent chemical stability and electrical properties. It is also commonly used in a range of fields, such as gas sensors, photocatalysts, optoelectronics, and solar photocell. Magnesium-doped zinc oxide (Mg-ZnO) nano powders were effectively produced using a basic chemical precipitation process at 45°C. Calcined Mg-ZnO nano powders have been characterized by FTIR, XRD, SEM-EDX and PL studies. XRD measurements from Mg-ZnO revealed development of a crystalline structure with an average particle size of 85 nm and SEM analysis confirmed the spherical morphology. Electrochemical property of produced Mg-ZnO nanoparticles was analyzed and the specific capacitance value of 729 F g–1 at 0.5 A g–1 current density was recorded and retained a specific capacitance ~100 percent at 2 A g–1 current density.
Go to article

Bibliography

[1] M . Kim, K.-J. Kim, S.-J. Lee, H.-M. Kim, S.-Y. Cho, M.-S. Kim, S.-H. Kim, K.-B. Kim, ACS Appl. Mater. Interfaces 9 (1), 701-709 (2017). DOI: https://doi.org/10.1021/acsami.6b12622
[2] S. Choi, S. I. Han, D. Kim, T. Hyeon, D.-H. Kim, Chem. Soc. Rev. 48 (6), 1566-1595 (2019). DOI: https://doi.org/10.1039/C8CS00706C
[3] L .H. Madkour, in Nanoelectron. Mater. Springer, 605-699 (2019). DOI: https://doi.org/10.1007/978-3-030-21621-4_16
[4] M . Rafique, M. B. Tahir, I. Sadaf, in Adv. Res. Nanosci. Water Technol. Springer, 95-131 (2019). DOI: https://doi.org/10.1007/978-3-030-02381-2_5
[5] T. Xiao, J. Huang, D. Wang, T. Meng, X. Yang, Talanta 206, 120210 (2020). DOI: https://doi.org/10.1016/j.talanta.2019.120210
[6] Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie, Q. Liu, Y. Wang, J. Wu, X. Wang, J. Tu, Adv. Energy Mater. 9 (8), 1803342 (2019). DOI: https://doi.org/10.1002/aenm.201803342
[7] F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, R. Soc. Open Sci. 6 (2), 181764 (2019). DOI: https://doi.org/10.1098/rsos.181764
[8] M .M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, N. Amin, Z. Zhang, Z. Imran, M.I. Yousuf, Appl. Nanosci. 10 (2), 421-433 (2020). DOI: https://doi.org/10.1007/s13204-019-01199-8
[9] H . Zeng, X. Zhao, F. Zhao, Y. Park, M. Sillanpää, Chem. Eng. J. 382, 122972 (2020). DOI: https://doi.org/10.1016/j.cej.2019.122972
[10] L . Zheng, F. Teng, X. Ye, H. Zheng, X. Fang, Adv. Energy Mater. 10 (1), 1902355 (2020). DOI: https://doi.org/10.1002/aenm.201902355
[11] M . Periyasamy, A. Kar, J. Mater. Chem. C 8 (14), 4604-4635 (2020). DOI: https://doi.org/10.1039/C9TC06469A
[12] S.K. Gupta, S. Gupta, A.K. Gupta, Adv. Sci. Eng. Med. 12 (1), 11-26 (2020). DOI: https://doi.org/10.1166/asem.2020.2516
[13] Z. Li, A. Khajepour, J. Song, Energy 182, 824-839 (2019). DOI: https://doi.org/10.1016/j.energy.2019.06.077
[14] S.A. Hashmi, N. Yadav, M.K. Singh, Polym. Electrolytes Charact. Tech. Energy Appl. 231-297 (2020). DOI: https://doi.org/10.1002/9783527805457.ch9
[15] X. Kong, L. Yang, Z. Cheng, S. Zhang, Materials 13 (1), 180 (2020). DOI: https://doi.org/10.3390/ma13010180
[16] B. Zhao, F. Mattelaer, J. Kint, A. Werbrouck, L. Henderick, M. Minjauw, J. Dendooven, C. Detavernier, Electrochimica Acta 320, 134604 (2019). DOI: https://doi.org/10.1016/j.electacta.2019.134604
[17] Y. Wang, C. Ma, C. Wang, P. Cheng, L. Xu, L. Lv, H. Zhang, Sol. Energy 189, 412-420 (2019). DOI: https://doi.org/10.1016/j.solener.2019.07.082
[18] J. Jiang, S. Liu, Y. Wang, Y. Liu, J. Fan, X. Lou, X. Wang, H. Zhang, L. Yang, Chem. Eng. J. 359, 746-759 (2019). DOI: https://doi.org/10.1016/j.cej.2018.11.190
[19] H .M.A. Javed, W. Que, M.R. Ahmad, K. Ali, M.I. Ahmad, A. ul Haq, S.K. Sharma, in Sol. Cells (Springer, 2020), pp. 25-54. DOI: https://doi.org/10.1007/978-3-030-36354-3
[20] S.E. Arasi, P. Devendran, R. Ranjithkumar, S. Arunpandiyan, A. Arivarasan, Mater. Sci. Semicond. Process. 106, 104785 (2020). DOI: https://doi.org/10.1016/j.mssp.2019.104785
[21] H .-C. Chen, Y.R. Lyu, A. Fang, G.J. Lee, L. Karuppasamy, J.J. Wu, C.K. Lin, S. Anandan, C.Y. Chen, Nanomaterials 10 (3), 475 (2020). DOI: https://doi.org/10.3390/nano10030475
[22] N . Sivakumar, J. Gajendiran, R. Jayavel, Chem. Phys. Lett. 745, 137262 (2020). DOI: https://doi.org/10.1016/j.cplett.2020.137262
[23] M .A.F. Mohd Shaifuddin, C.A. Che Abdullah, S.H. Ribut, N.S. Rosli, R. Mohd Zawawi, Malays. J. Sci. Health Technol. (2019). https://oarep.usim.edu.my/jspui/handle/123456789/5353
[24] G. Wu, Y. Song, J. Wan, C. Zhang, F. Yin, J. Alloys Compd. 806, 464-470 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.07.175
[25] S. Kasap, I.I. Kaya, S. Repp, E. Erdem, Nanoscale Adv. 1 (7), 2586-2597 (2019). DOI: https://doi.org/10.1039/C9NA00199A
[26] U . Bhat, S. Meti, Graphene-Based ZnO nanocomposites for Supercapacitor Applications in Graphene as Energy Storage Materials for Supercapacitors, Eds. Inamuddin, Rajender Boddula, Mohammad Faraz Ahmer and Abdullah M. Asiri, Materials Research Foundations 64, 181 (2020). DOI: https://doi.org/10.21741/9781644900550-7
[27] M . Ghosh, S. Mandal, A. Roy, S. Chakrabarty, G. Chakrabarti, S.K. Pradhan, Mater. Sci. Eng. C 106, 110160 (2020). DOI: https://doi.org/10.1016/j.msec.2019.110160
[28] R . Subbiah, S. Muthukumaran, V. Raja, Optik 164556 (2020). DOI: https://doi.org/10.1016/j.ijleo.2020.164556
[29] R . Sánchez-Tovar, E. Blasco-Tamarit, R.M. Fernández-Domene, M. Villanueva-Pascual, J. García-Antón, Surf. Coat. Technol. 125605 (2020). DOI: https://doi.org/10.1016/j.surfcoat.2020.125605
[30] N . Jayaprakash, R. Suresh, S. Rajalakshmi, S. Raja, E. Sundaravadivel, M. Gayathri, M. Sridharan, Mater. Technol. 35 (2), 112-124 (2020). DOI: https://doi.org/10.1080/10667857.2019.1659533
[31] M . Achehboune, M. Khenfouch, I. Boukhoubza, B.M. Mothudi, I. Zorkani, A. Jorio, J. Mater. Sci. Mater. Electron. 31 (6), 4595- 4604 (2020). DOI: https://doi.org/10.1007/s10854-020-03011-8
[32] C.V. Thulasi-Varma, B. Balakrishnan, H.-J. Kim, J. Ind. Eng. Chem. 81, 294-302 (2020). DOI: https://doi.org/10.1016/j.jiec.2019.09.017
[33] J. Yus, B. Ferrari, A.J. Sanchez-Herencia, Z. Gonzalez, Electrochimica Acta 335, 135629 (2020). DOI: https://doi.org/10.1016/j.electacta.2020.135629
[34] N . Liu, Z. Pan, X. Ding, J. Yang, G. Xu, L. Li, Q. Wang, M. Liu, Y. Zhang, J. Energy Chem. 41, 209-215 (2020). DOI: https://doi.org/10.1016/j.jechem.2019.05.008
[35] M . Bolsinger, M. Weller, S. Ruck, P. Kaya, H. Riegel, V. Knoblauch, Electrochimica Acta. 330, 135163 (2020). DOI: https://doi.org/10.1016/j.electacta.2019.135163
[36] H . Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan, B. Fei, F. Pan, Nano Energy 70, 104523 (2020). DOI: h ttps://doi.org/10.1016/j.nanoen.2020.104523
Go to article

Authors and Affiliations

S. Arul
1
ORCID: ORCID
T. Senthilnathan
2
ORCID: ORCID
V. Jeevanantham
3
ORCID: ORCID
K.V. Satheesh Kumar
4
ORCID: ORCID

  1. Jai Shriram Engineering College, Department of Physics, Tirupur-638660, Tamilnadu, India
  2. Sri Venkateshwara College of Engineering, Department of Applied Physics, Sriperumbudur-602117, Tamilnadu, India
  3. Vivekanandha College of Arts & Sciences for Women, Department of Chemistry, Tiruchengode 637205, Tamilnadu, India
  4. Kongu Engineering College, Department of Mechanical Engineering, Erode-638060, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the technology and basic properties of three compositions of lead-free ceramics: (i) (K0.44Na0.52Li0.04)NbO3, (ii) (K0.44Na0.52Li0.04)NbO3+0.5%mol Nd2O3 and (iii) (K0.44Na0.52Li0.04)NbO3+0.5%mol Pr2O3. Powders of the designed compositions based on KNLN were obtained with the classic ceramic technology, as a result of solid phase synthesis, from a mixture of simple oxides and carbonates. The synthesis of ceramic powders was carried out at Ts = 900°C for ts = 4 h, while compaction by free sintering at Tsint = 1100°C for tsint = 2 h.

XRD studies have shown that doping with praseodymium and neodymium promotes the formation of the tetragonal phase in the base composition (K0.44Na0.52Li0.04)NbO3 at lower temperatures. On the other hand, microstructural tests have shown that the admixture of neodymium and praseodymium improves the sinterability of ceramic samples during the technological process; however, the ceramic samples still exhibit high porosity.

Go to article

Authors and Affiliations

D. Bochenek
K. Osińska
M. Mankiewicz
P. Niemiec
G. Dercz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The work three ceramic compositions based on PbZr0.49Ti0.51O3 doped with manganese (Mn), antimony (Sb), lanthanum (La) and tungsten (W) were obtained. The introduction of a set of admixtures was aimed at improving the sinterability of ceramic materials and optimizing its electrophysical parameters. Multi-component materials of the PZT-type with a general formula: ­Pb(Zr0.49Ti0.51)0.94Mn0.021Sb0.016LayWzO3 (where y from 0.008 to 0.012 and z from 0.012 to 0.014) were prepared by the conventional mixed oxide method. After mixing and drying the powder mixtures were calcined in air at 850°C for 4 h, while densification of the powders was carried out by the free sintering method at 1150°C for 2 h. The final steps of technology were grinding, polishing, annealing and putting silver paste electrodes onto both surfaces of the samples for electrical testing.

XRD, SEM, EDS, dielectric, ferroelectric, piezoelectric properties and DC electrical conductivity of the obtained ceramic compositions were carried out. X-ray tests of the crystal structure conducted at room temperature have shown that all obtained the PZT-type materials were a single phase (perovskite type) without the presence of a foreign phase. Symmetry of the crystal lattice was identified as space group P4mm. Temperature dielectric studies have shown high values of dielectric permittivity and low dielectric loss. The presented physical properties of ceramic samples based on PZT confirm their predisposition for application in modern microelectronic and micromechatronic applications.

Go to article

Authors and Affiliations

D. Bochenek
P. Niemiec
E. Ćwikiel
T. Goryczka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Analysis is performed of the contemporary views on the effect of ion etching (ion-beam milling and reactive ion etching) on physical properties of HgCdTe and on the mechanisms of the processes responsible for modification of these properties under the etching. Possibilities are discussed that ion etching opens for defect studies in HgCdTe, including detecting electrically neutral tellurium nanocomplexes, determining background donor concentration in the material of various origins, and understanding the mechanism of arsenic incorporation in molecular-beam epitaxy-grown films.

Go to article

Authors and Affiliations

I.I. Izhnin
K.D. Mynbaev
A.V. Voitsekhovskii
A.G. Korotaev
O.I. Fitsych
M. Pociask-Bialy
Download PDF Download RIS Download Bibtex

Abstract

The aims of this study were to enhance electronic, photophysical and optical properties of molecular semiconductors. For this purpose, the isomers of the B-doped molecule (5,5′-Dibromo-2,2′-bithiophene) have been investigated by density functional theory (DFT) based on B3LYP/6-311++G** level of theory. The isomers were first calculated using kick algorithm. The most stable isomers of the B-doped molecule are presented depending on the binding energy, fragmentation energy, ionization potential, electron affinity, chemical hardness, refractive index, radial distribution function and HOMO-LUMO energy gap based on DFT. Ultraviolet-visible (UV–vis) spectra have been also researched by time-dependent (TD) DFT calculations. The value of a band gap for isomer with the lowest total energy decreases from 4.20 to 3.47 eV while the maximum peaks of the absorbance and emission increase from 292 to 324 nm and 392 to 440 nm with boron doped into 5,5′-Dibromo-2,2′-bithiophene. Obtained results reveal that the B-doped molecule has more desirable optoelectronic properties than the pure molecule.

Go to article

Authors and Affiliations

I. Muz
M. Kurban
Download PDF Download RIS Download Bibtex

Abstract

Studies of background donor concentration (BDC) in HgCdTe samples grown with different types of technology were performed with the use of ion milling as a means of eliminating the compensating acceptors. In bulk crystals, films grown with liquid phase epitaxy and films fabricated with molecular beam epitaxy (MBE) on Si substrates, BDC of the order of ~1014 cm-3 was revealed. Films grown with metal−organic chemical vapour deposition and with MBE on GaAs substrates showed BDC of the order of ~1015 cm-3. A possibility of assessing the BDC in acceptor (arsenic)−doped HgCdTe was demon− strated. In general, the studies showed the effectiveness of ion milling as a method of reducing electrical compensation in n−type MCT and as an excellent tool for assisting evaluation of BDC.

Go to article

Authors and Affiliations

I.I. Izhnin
K.D. Mynbaev
A.V. Voitsekhovsky
A.G. Korotaev
O.I. Fitsych
M. Pociask-Bialy
S.A. Dvoretsky
Download PDF Download RIS Download Bibtex

Abstract

We demonstrated two methods of increasing the bandwidth of a broadband light source based on amplified spontaneous emission in thulium-doped fibres. Firstly, we have shown by means of a comprehensive numerical model that the full-width at half maximum of the thulium-doped fibre based broadband source can be more than doubled by using specially tailored spectral filter placed in front of the mirror in a double-pass configuration of the amplified spontaneous emission source. The broadening can be achieved with only a small expense of the output power. Secondly, we report results of the experimental thulium-doped fibre broadband source, including fibre characteristics and performance of the thulium-doped fibre in a ring laser setup. The spectrum broadening was achieved by balancing the backward amplified spontaneous emission with back-reflected forward emission.

Go to article

Authors and Affiliations

M. Písařík
Pavel Peterka
ORCID: ORCID
J. Aubrecht
J. Cajzl
A. Benda
D. Mareš
F. Todorov
O. Podrazký
Pavel Honzátko
ORCID: ORCID
I. Kašík
Download PDF Download RIS Download Bibtex

Abstract

The viability of epitaxial regrowth of non-intentionally doped InP to passivate lateral mesa surfaces of InGaAs photodiodes lattice-matched to InP is investigated, evaluating whether the residual doping of the regrown layer can be responsible for an unexpected increase of the surface current. The effect of residual doping is evaluated via numerical calculations of dark current, considering the range of doping concentrations expected for non-intentionally doped InP. The calculations show that the increase in dark current due to the residual doping of the regrown InP layer is not enough to justify the observed increase in surface current. On the other hand, the technique is still valid as a passivation method if the photodetector pixel is isolated by etching only the top contact layer.
Go to article

Authors and Affiliations

Osvaldo M. Braga
1
Cristian A. Delfino
1
Rudy M. S. Kawabata
2
Luciana D. Pinto
2
Gustavo S. Vieira
1
Maurício P. Pires
3
Patricia L. Souza
2
Euclydes Marega
4
John A. Carlin
5
Sanjay Krishna
5

  1. Institute for Advanced Studies, IEAV, 12228-001, São Paulo, Brazil
  2. LabSem, CETUC, Pontifícia Universidade Católica, PUC-Rio, R. Marquês de São Vicente 124, Gávea, 22451-900 Rio de Janeiro, Brazil
  3. Physics Institute, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil
  4. Universidade de São Paulo, USP-São Carlos, 13566-560 São Carlos, SP, Brazil
  5. Ohio State University, 281 W Lane Ave., Columbus, OH 43210, USA
Download PDF Download RIS Download Bibtex

Abstract

To clarify the effect of copper powder morphology on the microstructure and properties of copper matrix bulk composites reinforced with Ni-doped graphene, spherical and dendritic copper powders were selected to fabricate the Ni-doped graphene reinforced copper matrix bulk composites. The Ni-doped graphene were synthesized by hydrothermal reduction method, followed by mixing with copper powders, and then consolidated by spark plasma sintering. It is found that the Ni-doped graphene are well bonded with the dendritic copper powder, whereas Ni-doped graphene are relatively independent on the spherical copper powder. The copper base bulk composite prepared by the dendritic copper powder has better properties than that prepared by spherical copper powder. At 0.5wt.% Ni-doped graphene, the dendritic copper base bulk composite has a good combination of hardness, electrical conductivity and yield strength, which are 81.62 HV, 87.93% IACS and 164 MPa, respectively.
Go to article

Authors and Affiliations

Jituo Liu
1
ORCID: ORCID
Xianhui Wang
1
ORCID: ORCID
Jia Liu
2
ORCID: ORCID
Hangyu Li
1
Yan Liang
1
ORCID: ORCID
Jingyi Ren
1
ORCID: ORCID

  1. Xi’an University of Technology, School of Materials Science and Engineering, Xi’an 710048, P.R. China
  2. Xi’an Polytechnic University, School of Materials Science and Engineering, Xi’an 710048, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

Aurivillius Bi5Ti3FeO15 (BTF) and Bi5-xNdxTi3FeO15 (BNTF) ceramics were successfully synthesized by a simple solid state reaction method. Ceramics were prepared from simple oxide powders Bi2O3, TiO­2, Nd2O3 and Fe2O3. The microstructure, structure, chemical composition and dielectric properties of the obtained materials were examined. Dielectric properties were investigated in a wide range of temperatures (T = 25ºC-550ºC) and frequencies (20Hz-1MHz).
Go to article

Authors and Affiliations

N. Kocoń
1
J. Dzik
ORCID: ORCID
D. Szalbot
1
ORCID: ORCID
T. Pikula
2
ORCID: ORCID
M. Adamczyk-Habrajska
1
ORCID: ORCID
B. Wodecka-Duś
1
ORCID: ORCID

  1. University of Silesia, Institute of Materials Science, 12 Zytnia Str., 41-200 Sosnowiec, Poland
  2. Lublin University of Technology, Institute of Electronics and Information Technology, 38A Nadbystrzycka Str., 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Doping is one of the possible ways to significantly increase the thermoelectric properties of many different materials. It has been confirmed that by introducing bismuth atoms into Mg sites in the Mg2Si compound, it is possible to increase career concentration and intensify the effect of phonon scattering, which results in remarkable enhancement in the figure of merit (ZT) value. Magnesium silicide has gained scientists’ attention due to its nontoxicity, low density, and inexpensiveness. This paper reports on our latest attempt to employ ultrafast selfpropagating high-temperature synthesis (SHS) followed by the spark plasma sintering (SPS) as a synthesis process of doped Mg2Si. Materials with varied bismuth doping were fabricated and then thoroughly analyzed with the laser flash method (LFA), X-ray diffraction (XRD), scanning electron microscopy (SEM) with an integrated energy-dispersive spectrometer (EDS). For density measurement, the Archimedes method was used. The electrical conductivity was measured using a standard four-probe method. The Seebeck coefficient was calculated from measured Seebeck voltage in the sample subjected to a temperature gradient. The structural analyses showed the Mg2Si phase as dominant and Bi2Mg3 located at grain boundaries. Bismuth doping enhanced ZT for every dopant concentration. ZT = 0:44 and ZT=0.38 were obtained for 3wt% and 2wt% at 770 K, respectively.
Go to article

Authors and Affiliations

Bartosz Bucholc
1
ORCID: ORCID
Kamil Kaszyca
1
ORCID: ORCID
Piotr Śpiewak
2
ORCID: ORCID
Krzysztof Mars
3
ORCID: ORCID
Mirosław J. Kruszewski
2
ORCID: ORCID
Łukasz Ciupiński
2
ORCID: ORCID
Krystian Kowiorski
1
ORCID: ORCID
Rafał Zybała
1 2
ORCID: ORCID

  1. Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  2. Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
  3. Faculty of Materials Science and Ceramic, AGH University of Science and Technology, Kraków, Al. Mickiewicza 30, 30-059, Poland
Download PDF Download RIS Download Bibtex

Abstract

Aurivillius Bi5-xHoxTi3FeO15 (BHTFO) multiferroic ceramics with different holmium doping contents were synthesized by conventional solid state reaction. The effect of holmium doping on the microstructure, structural and dielectric behaviors of BHTFO ceramics were investigated in details. Microstructure and crystalline structure studies of ceramics were carried out at room temperature while dielectric properties were investigated in a wide range of temperature (T = 25ºC-550ºC) and frequency (20Hz-1MHz).

Go to article

Authors and Affiliations

M. Tomaszewska
J. Dzik
ORCID: ORCID
B. Wodecka-Duś
ORCID: ORCID
T. Pikula
ORCID: ORCID
M. Adamczyk-Habrajska
ORCID: ORCID
D. Szalbot
ORCID: ORCID
D. Chocyk
Download PDF Download RIS Download Bibtex

Abstract

A simple and robust method to generate a dual-wavelength mode-locked laser using a tunable Mach-Zehnder filter (TMZF) and a single-wall carbon nanotube (SWCNT) based saturable absorber (SA) is proposed and demonstrated. The proposed laser uses a thulium-doped fiber for lasing in the two-micron region and exploits the interferometric spectrum of the TMZF to produce dual peaks with nearly equal magnitude. SWCNT based SA enables mode-locking at a threshold value of 150.4 mW with distinct dual-wavelength peaks at 1919.2 nm and 1963.7 nm. The peaks have a calculated pulse width of 1.8 ps and 1.6 ps, respectively with a repetition rate of 9.1 MHz with a relatively high optical-signal-to-noise ratio value of 59.1 dB. The output is also observed to remain unchanged over time, indicating high stability. The proposed laser has a promising application, particularly in ultrafast gas molecular spectroscopy and sensing.

Go to article

Authors and Affiliations

A.S. Sharbirin
M.Z. Samion
M.F. Ismail
H. Ahmad
Download PDF Download RIS Download Bibtex

Abstract

Transparent Al doped ZnO nanocrystalline films with a crystallite size less than 19 nm are obtained by spray pyrolysis. Band gap increases monotonically from 3.16 to 3.31 eV with increasing aluminum dopant up to 1.56 at.% facilitating increasing width of a transmission window in addition to the band gap tuning of 4.74% which compares favorably well with literature. UV emission with continuously increasing intensity is obtained which reflects on the good crystalline quality of the films. Also the defect emissions are suppressed remarkably as the dopant Al concentration increases in ZnO. The band gap tuning by quite small increment in dopant amount makes the present films, much attractive for the fabrication of light emitting devices with a much sought-for benefit of large area fabrication. FESEM shows the surface is granular with grain size lying in the range of 20–35 nm and EDX confirms the presence of Al in the doped samples.

Go to article

Authors and Affiliations

N. Kumar
A. Srivastava
Download PDF Download RIS Download Bibtex

Abstract

In this paper our results of investigation on a pump power combiner in a configuration of 7×1 are presented. The performed combiner, with pump power of 80–85% transmission level, was successfully applied in a thulium doped fibre laser. The performed all-fibre laser setup reached a total CW output power of 6.42 W, achieving the efficiency on a 32.1% level

Go to article

Authors and Affiliations

D. Stachowiak
P. Kaczmarek
K.M. Abramski
Download PDF Download RIS Download Bibtex

Abstract

Transport, photoluminescence, THz transmission, and optically detected cyclotron resonance studies were carried out on samples with a single modulation-doped CdTe/Cd 1-xMg xTe quantum well. THz experiments were performed at liquid helium temperatures for photon energies between about 0.5 meV and 3.5 meV. An effective mass of electron was determined to be (0.1020±0.0003)m 0. Observed photoluminescence and optically detected cyclotron resonance spectra cannot be explained within the simple model of Landau quantization of parabolic bands.
Go to article

Authors and Affiliations

Jerzy Łusakowski
1
ORCID: ORCID
Maciej Zaremba
1
Adam Siemaszko
1
Krzysztof Karpierz
1
Zbigniew Adamus
2 3
ORCID: ORCID
Tomasz Wojtowicz
4
ORCID: ORCID

  1. Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  2. Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  3. International Research Centre Mag Top, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  4. International Research Centre Mag Top, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, the copper doping effect on the NiAl structural stability, strength, and electronic structure was investigated. The samples were prepared using induction melting at 2073 K. This material presents good mechanical and physical properties such as high-temperature strength, fatigue or impact, and corrosion resistance which meet technical requirements of many applications. The microstructure of the Cu-doped nickel aluminide was studied using a metallurgical microscope and its lattice parameter was also studied and characterized using an X-ray diffractometer for different concentrations of Cu. The lattice constant of the existing phases was calculated, and it was found that the lattice distortion and gamma prime phase energy have high values allowing the increase of the entropy term of the alloy and subsequently increasing its hardness. From the ab-initio calculation, it was determined that the Cu atoms have the Al sites as a preferred site and prefer to bond with Ni atoms which leads to the improvement of the material hardness. Ab-initio density functional theory was applied to study the formation energy that revealed increasing with Cu amount.
Go to article

Bibliography

  1. Bochenek, K. & Basista, M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Aerosp. Sci. 79, 136–146 (2015). https://doi.org/10.1016/j.paerosci.2015.09.003
  2. Chandler, K. A., Marine and Offshore Corrosion. (Elsevier, 1985). https://doi.org/10.1016/C2013-0-06267-6
  3. Busso, E. P. & McClintock, F. A. Mechanisms of cyclic defor-mation of NiAl single crystals at high temperatures. Acta Metall. Mater. 42, 3263–3275 (1994). https://doi.org/10.1016/0956-7151(94)90459-6
  4. Ren, W. L., Guo, J. T., Li, G. S. & Wu, J. S. The critical temperature for brittle-to-ductile transition of intermetallic compound based on NiAl. Lett. 58, 1272–1276 (2004). https://doi.org/10.1016/j.matlet.2003.09.020
  5. Porcayo-Calderon, J. et al. Effect of Cu addition on the electro-chemical corrosion performance of Ni3Al in 1.0 M H2SO4. Mater. Sci. Eng. 2015, 209286 (2015). https://doi.org/10.1155/2015/209286
  6. Huai, K., Guo, J., Gao, Q. & Yang, R. The microstructure of Au-doped NiAl–Cr(Mo) eutectic and its mechanical properties. Lett. 59, 3291–3294 (2005). https://doi.org/10.1016/j.matlet.2005.05.061
  7. Chiba, A., Hanada, S. & Watanabe, S. Improvement in ductility of Ni3Al by γ former doping. Sci. Eng. A 152, 108–113 (1992). https://doi.org/10.1016/0921-5093(92)90054-5
  8. Bhosale, A. G. & Chougule, B. K. Electrical conduction in Ni–Al ferrites. Lett. 60, 3912–3915 (2006). https://doi.org/10.1016/j.matlet.2006.03.139
  9. Darolia, R., Lahrman, D. & Field, R. The effect of iron, gallium and molybdenum on the room temperature tensile ductility of NiAl. Metall. Mater. 26, 1007–1012 (1992). https://doi.org/10.1016/0956-716X(92)90221-Y
  10. Pan, Y., Li, Y. & Zheng, Q. Influence of Ir concentration on the structure, elastic modulus and elastic anisotropy of NbIr based compounds from first-principles calculations. Alloys Compd. 789, 860–866 (2019). https://doi.org/10.1016/j.jallcom.2019.03.083
  11. Pan, Y., Wang, P. & Zhang, C.-M. Structure, mechanical, electronic and thermodynamic properties of Mo5Si3 from first-principles calculations. Int. 44, 12357–12362 (2018). https://doi.org/10.1016/j.ceramint.2018.04.023
  12. Pan, Y. First-principles investigation of the new phases and electro-chemical properties of MoSi2 as the electrode materials of lithium ion battery. Alloys Compd. 779, 813–820 (2019). https://doi.org/10.1016/j.jallcom.2018.11.352
  13. Pan, Y., Wang, S., Zhang, X. & Jia, L. First-principles investigation of new structure, mechanical and electronic properties of Mo-based silicides. Int. 44, 1744–1750 (2018). https://doi.org/10.1016/j.ceramint.2017.10.106
  14. Huang, J., Xing, H., Wen, Y. & Sun, J. Effect of Fe ternary addition on ductility of NiAl intermetallic alloy. Rare Met. 30, 316–319 (2011). https://doi.org/10.1007/s12598-011-0292-7
  15. Sugilal, G. et al. Indigenous development of induction skull melting technology for electromagnetic processing of refractory and reactive metals and alloys. Today Proc. 3, 2942–2950 (2016). https://doi.org/10.1016/j.matpr.2016.09.007
  16. Akai, H. Fast Korringa-Kohn-Rostoker coherent potential approx­imation and its application to FCC Ni-Fe systems. Phys. Condens. Matter 1, 8045–8064 (1989). https://doi.org/10.1088/0953-8984/1/43/006
  17. Nagy, Á. Density functional. Theory and application to atoms and molecules. Rep. 298, 1–79 (1998). https://doi.org/10.1016/S0370-1573(97)00083-5
  18. Zarhri, Z., Ziat, Y., El Rhazouani, O., Benyoussef, A. & Elkenz, A. Titanium atoms dimerization phenomenon and magnetic properties of titanium-antisite (TiO) and chromium doped rutile TiO2, ab-initio calculation. Phys. Chem. Solids 94, 12–16 (2016). https://doi.org/10.1016/j.jpcs.2016.03.002
  19. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  20. Zarhri, Z. et al. Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects. Magn. Magn. Mater. 406, 212–216 (2016). https://doi.org/10.1016/j.jmmm.2016.01.029
  21. Pan, Y. & Wen, M. Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction. J. Hydrogen Energy 43, 22055–22063 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.093
  22. Pan, Y., Li, Y. Q., Zheng, Q. H. & Xu, Y. Point defect of titanium sesquioxide Ti2O3 as the application of next generation Li-ion batteries. Alloys Compd. 786, 621–626 (2019). https://doi.org/10.1016/j.jallcom.2019.02.054
  23. Pan, Y. Theoretical discovery of high capacity hydrogen storage metal tetrahydrides. J. Hydrogen Energy 44, 18153–18158 (2019). https://doi.org/10.1016/j.jallcom.2019.02.054
  24. Pan, Y. Vacancy-enhanced cycle life and electrochemical perfor-mance of lithium-rich layered oxide Li2RuO3. Int. 45, 18315–18319 (2019). https://doi.org/10.1016/j.ceramint.2019.06.044
  25. Ziat, Y., Hammi, M., Zarhri, Z., Laghlimi, C. & El Rhazouani, O. Ferrimagnetism and ferromagnetism behavior in (C, Mn) co-doped SnO2 for microwave and spintronic: Ab initio investigation. Magn. Magn. Mater. 483, 219–223 (2019). https://doi.org/10.1016/j.jmmm.2019.03.084
  26. Liu, J., Cao, J., Lin, X., Song, X. & Feng, J. Microstructure and mechanical properties of diffusion bonded single crystal to polycrystalline Ni-based superalloys joint. Des. 49, 622–626 (2013). https://doi.org/10.1016/j.matdes.2013.02.022
  27. Zheng, L., Sheng, L. Y., Qiao, Y. X., Yang, Y. & Lai, C. Influence of Ho and Hf on the microstructure and mechanical properties of NiAl and NiAl-Cr(Mo) eutectic alloy. Res. Express 6, 046502 (2019). https://doi.org/10.1088/2053-1591/aaf8ea
  28. Sheng, L. Y. et al. Microstructure characteristics and compressive properties of NiAl-based multiphase alloy during heat treatments. Sci. Eng. A 528, 8324–8331 (2011). https://doi.org/10.1088/2053-1591/aaf8ea
  29. Sheng, L. et al. Effect of Au addition on the microstructure and mechanical properties of NiAl intermetallic compound. Intermetallics 18, 740–744 (2010). https://doi.org/10.1016/j.intermet.2009.10.015
  30. Wittmann, F. H. Crack formation and fracture energy of normal and high strength concrete. Sadhana 27, 413–423 (2002). https://doi.org/10.1007/BF02706991
  31. Ziat, Y. et al. First-principles study of magnetic and electronic properties of fluorine-doped Sn98Mn0.02O2 system. J. Supercond. Novel Magn. 29, 2979–2985 (2016). https://doi.org/10.1007/s10948-016-3609-9
  32. Han, Y.-J. & Park, S.-J. Influence of nickel nanoparticles on hydro-gen storage behaviors of MWCNTs. Surf. Sci. 415, 85–89 (2017). https://doi.org/10.1016/j.apsusc.2016.12.108
  33. Tsao, T.-K. & Yeh, A.-C. The thermal stability and strength of highly alloyed Ni3 Mater. Trans. 56, 1905–1910 (2015). https://doi.org/10.2320/matertrans.M2015298
Go to article

Authors and Affiliations

Zakaryaa Zarhri
1
ORCID: ORCID

  1. CONACYT-Tecnológico Nacional de México/I.T. Chetumal; Insurgentes 330, C.P. 77013, Chetumal, Quintana Roo, Mexico

This page uses 'cookies'. Learn more