Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The research aimed to find suitable solutions to reduce the salinity stress of irrigation water for some types of vegetables in hydroponics under two drip and mist irrigation systems. The different concentrations of NaCl for irrigation water, are 500, 1000, 2000, 3000, and 4000 ppm used. Proline (30 mg∙dm –3), humic acid (300 mg∙dm –3) and compared without any from them were used to study their effect on the yield, and water use efficiency. The results indicated that the highest spinach and courgette yield (4.657 and 5.153 kg∙m –2) was observed for the DP500 treatment, and the lowest yield (0.348 and 0.634 kg∙m –2) was observed for the SW4000 treatment, respectively. The use of humic acid led to an increased yield on average by about 16.8 and 19.3% for spinach, and 39.4 and 51.7% for courgette, under drip and mist irrigation, respectively. Using proline led to an increased average yield of about 32.9 and 33% for spinach, and 51.8 and 58.4% for courgette, under drip and mist irrigation, respectively. The highest water use efficiency (WUE) of spinach and courgette (43.1 and 51.5 kg∙m –3) was observed for the DP500 treatment, and the lowest (3.2 and 6.3 kg∙m –3) was observed for the SW4000 treatment. According to our study, the use of proline and humic acid could compensate for the adverse effects of salinity under mist spraying more than drip irrigation.
Go to article

Authors and Affiliations

Ahmed I. Abd-Elhakim
1
ORCID: ORCID

  1. Agricultural Research Center, Agricultural Engineering Research Institute, Irrigation and Drainage Engineering Department, Nadi El-Said St., P.O. Box 256, Dokki, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of this study is to determine the optimum water consumption for achieving water savings and obtaining good yields in cotton production, which has been expanding in Central Asia and Turkmenistan since the 1960s. In the last few decades, water resources in the region have been difficult to access, due to the expansion of agricultural activity and population growth. The oscillation of the amount of water released from dams of the Amudarya River to obtain energy for the upper countries in the winter season has been causing crises in countries of Central Asia.
An experiment was carried out in an agricultural field at a cotton research centre in the Yolöten district of Turkmenistan. The experiment led to the observation that it is possible to achieve higher efficiency and lower water consumption in cotton production. At the same time, the water savings that can be achieved as a result of using the drip irrigation method in cotton production throughout the country have been calculated. The calculations have provided the basis for recommending irrigation as a solution to the problems in question.
Go to article

Bibliography

ALIMOVA M. 2021. Agropromyshlennyy kompleks [Agro-industrial complex]. Neytral’nyy Turkmenistan. Gosudarstvennaya gazeta Turkmenistana. No. 49 (29742) 25.02.2021 p. 4.
BERDIMYRADOV D. 2014. Ýyllyk hasabat [Annual report]. Mary welaýatynyň Ýolöten şäherindäki ylmy-tohumçylyk merkezi. Yoloten pp. 6.
IBRAGIMOV N., EVETT S.R., ESANBEKOV Y., KAMILOV B.S., MIRZAEV L., LAMERS J.P. 2007. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agricultural Water Management. Vol. 90(1–2) p. 112–120. DOI 10.1016/j.agwat.2007.01.016
KULMEDOV B., SHCHERBAKOV V.I. 2014. Ispol’zovaniye kapel’nogo orosheniya sel’skokhozyaystvennykh zemel’ v basseyne reki Amudar’ya. V: Tekhnologii ochistki vody «TEKHNOVOD- 2014». Materialy VIII mezhdunarodnoy nauchno-prakticheskoy konferentsii «TEKHNOVOD» [Use of drip irrigation of agri-cultural lands in the Amu Darya river basin. In: Water purification technologies “TECHNOVOD-2014”. Materials of the VIII International Scientific and Practical Conference “TECHNOVOD”]. 23–24.10.2014 Sochi. Novocherkatstsk. Lik p. 29–33.
KURTOVEZOV G.D., TAGANOV CH.K., KURTOVEZOV B. 2019. Rekomendatsii po proyektirovaniyu sistem kapel’nogo orosheniya sel’skokho-zyaystvennykh kul’tur, vinogradnikov, sadov i lesnykh nasazhde-niy dlya usloviy Turkmenistana [Recommendations for the design of a drip irrigation system for crops, vineyards, orchards and forest plantations for the conditions of Turkmenistan]. Ashgabat pp. 242.
LIU S., LUO G., WANG H. 2020. Temporal and spatial changes in crop water use efficiency in Central Asia from 1960 to 2016. Sustainability. Vol. 12(2), 572 pp. 18. DOI 10.3390/su12020572.
NARBAYEV M., ISMAILOVA G.K., NARBAYEVA K.T. 2014. Ekologicheskiye voprosy oroshayemogo zemledeliya v Tsentral’noy Azii. Mezh-dunarodnyy forum «Inzhenernoye obrazovaniye i nauka v XXI veke: Problemy i perspektivy» posvyashchennoy [Environmental issues of irrigated land in Central Asia. International Forum “Engineering Education and Science in the XXI Century: Problems and Prospects”]. 22–24.10.2014. Almaty. Kazakhskiy natsional’nyy tekhnicheskiy universitet p. 627–633.
REDDY J.M., MUHAMMEDJANOV S., JUMABOEV K., ESHMURATOV D. 2012. Analysis of cotton water productivity in Fergana Valley of Central Asia. Agricultural Sciences. Vol. 3(6) p. 822–834. DOI 10.4236/as.2012.36100.
SHCHERBAKOV V.I., KULMEDOV B. 2017. Ratsional’noye ispol’zovaniye i okhrana vodnykh resursov basseyna reki Amudar’ya. V: Yakovlevskiye chteniya: sbornik dokladov XII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, posvyashchennoy pamyati akademika
RAN S.V. Yakovleva [Rational use and protection of water resources of the Amu Darya river basin. In: Yakovlev Readings: A collection of reports of the XII International Scientific and Technical Conference dedicated to the memory of Academician of the Russian Academy of Sciences S.V. Yakovlev]. Moscow. NIU MGTSU p. 241–247. STANCHIN I., LERMAN Z. 2017. Wheat production in Turkmenistan: Reality and expectations. In: The Eurasian wheat belt and food security: Global and regional aspects. Eds. S.G. Paloma, S. Mary, S. Langrell, P. Ciaian. Cham. Springer p. 215–228. Turkmen Stat 2020. Türkmenistanyň ýyllyk statistik neşiri 2019 [Statistical yearbook of Turkmenistan 2019]. Ashgabat. Türkme-nistanyň Statistika baradaky döwlet komiteti pp. 182.
UNDP, WHO 2009. The Energy Access Situation In Developing Countries. A Review Focusing on the Least Developed Countries and Sub-Saharan Africa [online]. New York, NY. United Nations Development Programme, World Health Organization. [Access 28.10.2019] Available at: http://www.undp.org/content/dam/ undp/library/Environment%20and%20Energy/Sustainable%20Energy/energy-access-situation-in-developing-countries.pdf
ZHUPANKHAN A., TUSSUPOVA K., BERNDTSSON R. 2017. Could changing power relationships lead to better water sharing in Central Asia? Water. Vol. 9(2), 139. DOI 10.3390/w9020139.
ZONN I.S., KOSTIANOY A.G. 2013. The Turkmen Lake Altyn Asyr and water resources in Turkmenistan. Ser. The Handbook of Environmental Chemistry. Vol. 28. Berlin, Heidelberg Springer. ISBN 978-3-642-38607-7 pp. XII+123.
Go to article

Authors and Affiliations

Begmyrat Kulmedov
1
ORCID: ORCID
Vladimir I. Shcherbakov
2
ORCID: ORCID

  1. Nile University of Nigeria, Department of Civil Engineering, Plot 681, Cadastral Zone C-OO, Research & Institution Area, Jabi Airport Bypass, Abuja FCT, 900001, Nigeria
  2. Voronezh State Technical University, Department of Hydraulics, Water Supply and Water Disposal, Voronezh, Russia
Download PDF Download RIS Download Bibtex

Abstract

At present, Pakistan has been facing acute shortage of irrigation water and farmers have been using conventional irrigation methods for orchards, such as flood and basin irrigation, thus wasting huge amount of fresh water. Therefore, it is necessary to find efficient irrigation methods to cope with this major burning issue. The micro drip irrigation method is considered efficient but in the case of mango orchards there is a problem of irrigation frequency, number of emitters, and duration of flow from emitters to meet water demand. Considering the above, an experiment was conducted in the experimental field of the Sindh Agriculture University, Tandojam, by installing the drip system with two circular peripheries of lateral lines in clay loam soil covering the entire canopy of a mature mango tree. The radius of the first and second periphery around the tree trunk was 100 cm and 150 cm, respectively. Four emitters with 4 dm3∙h –1 discharge of individual dipper were fixed in each periphery. Emitters were tested for six different irrigation times, i.e. 1, 2, 3, 4, 5 and 6 h, to observe the moisture distribution pattern. Hydraulic characteristics, such as density, field capacity, porosity, infiltration rate, available water and permanent wilting point (PWP), were determined using standard methods (1.4 g∙cm –3, 33%, 49%, 8 mm∙h –1, 12.41% and 20% respectively). The texture class of the soil profile was determined as clay loam at the soil depth 0–120 cm. Fifty soil samples were collected at 0–10, 10– 30, 30–60, 60–90, and 90–120 cm depths and at 0–20, 20–40, 40–60, 60–80 and 80–100 cm distances on two opposite sides of emitters. The emitters provided sufficient moisture up to field capacity in clay loam soil with flow duration of 4 h. The maximum moisture distribution efficiency was 77.89% with flow duration of 4 h at vertical depth of 0–120 cm and 0–100 cm distance horizontally among four emitters as compared to 1, 2, 3 h flow duration which under irrigated the canopy area and 5, 6 h flow duration which excessively irrigated the canopy area of the mango tree. The water demand of the mango tree was met by 4 h flow duration which provided adequate moisture to the entire canopy up to 120 cm depth in the root zone and water saving was calculated as 15.91% under the installed drip irrigation system as compared with the conventional (basin) irrigation method.
Go to article

Authors and Affiliations

Shoukat Ali Soomro
1
ORCID: ORCID
Muhammad Saffar Mirjat
1
Munir Ahmed Mangrio
1
Mashooque Ali Talpur
1

  1. Sindh Agriculture University, Tandojam, Faculty of Agricultural Engineering, 70060, Hyderabad, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

A computer model EUSS (Emission Uniformity on Sloping Surfaces) has been developed to design and evaluate the system capacity under operating conditions for drip irrigation system. And achieve the desired value of emission uniformity that is not significantly different according to the recommended values by applying it in field experiment located at Al- -Slahia city, Egypt. The model has the ability to design the system by all of the common design techniques and have ability to customize any of them.

EUSS model includes two main parts: crop water requirements, and hydraulic calculations of the system using metric unit system. It developed in graphical user interface of the programming language C-sharp (C#) by using Microsoft Visual Studio. The model database is containing the equations, tables and reference values to get more rapid and accurate results, and gives the opportunity for selecting some parameters such as: soil properties, characteristics of the corresponding crop, and climatic data. EUSS model allows the user to assume or set definite values, for example plot layout, land slopes and topography, the emitter characteristics and operating conditions.

Go to article

Bibliography

ALI M. 2016. Design approach to optimize pressurized irrigation systems in Egypt. M.Sc. Thesis. Helwan University. Mataria Faculty of Engineering, Mechanical Power Department pp. 113.
ALLEN R. 1999. SPRINKMOD – pressure and discharge simulation model for pressurized irrigation systems. 1. Model development and description. Irrigation Science. Vol. 18 p. 141–148.
ALLEN R.G., PEREIRA L.S., RAES D., SMITH M. 1998. Chapter 1. Introduction to evapotranspiration. In: Crop evapotranspiration – Guidelines for computing crop water requirements [online]. Food and Agriculture Organization of the United Nations (FAO). Irrigation and Drainage Paper 56. Rome. FAO. [Access 15.12.2019]. Available at: http://www.fao.org/3/X0490E/x0490e04.htm#evapotranspiration
ASAE 1999a. Design and installation of micro-irrigation systems. EP405.1 DEC98. In: ASAE Standards 1999: Standards Engineering Practices Data. St. Joseph. American Society of Agricultural Engineers p. 879–881.
ASAE 1999b. Field evaluation of micro-irrigation systems, EP458 DEC98. In: ASAE Standards 1999: Standards Engineering Practices Data. St. Joseph. American Society of Agricultural Engineers p. 922–923.
BREMERE I., KENNEDY M., STIKKER A., SCHIPPERS J. 2001. How water scarcity will affect the growth in the desalination market in the coming 25 years. Desalination. Vol. 138. Iss. 1–3 p. 7–15. DOI 10.1016/S0011-9164(01)00239-9.
EL-FELLALY S., SALEH E. 2004. Egypt’s experience with regard to water demand management in agriculture. [Eighth International Water Technology Conference, IWTC8]. [2004 Alexandria, Egypt].
FAO 2011. The state of the world’s land and water resources for food and agriculture. Managing systems at risk. Rome–London. Food and Agriculture Organization of the United Nations, Earthscan. ISBN 978-1-84971-327-6 pp. 285.
GU Z., QI Z., MA L., GUI D., XU J., FANG Q., YUAN S., FENG G. 2017. Development of an irrigation scheduling software based on model predicted crop water stress. Computers and Electronics in Agriculture. Vol. 143 p. 208–221.
HOFWEGEN P., SVENDSEN M. 2000. A vision of water for food and ruaral development: Final. [International Conference “World Water Forum”]. [17 March 2000 The Hague] pp. 82.
IRMAK S., ODHIAMBO L., KRANZ W., EISENHAUER D. 2011. Irrigation efficiency and uniformity, and crop water use efficiency [online]. Department of Biological Systems Engineering: Papers and Publications. University of Nebraska – Lincoln. [2011]. Available at: https://extensionpublications.unl.edu/assets/pdf/ec732.pdf
ISMAIL S., ELNESR M., ELASHRY R. 2000. Computer aided design of drip irrigation systems. Misr Journal of Agricultural Engineering. Vol. 18(2) p. 243–260. JAIN S. 2001. Development of design methodology and software for micro-irrigation sub-units. M.Sc. Thesis. Pantnagar. G. B. Pant University of Agriculture and Technology. Department of Irrigation and Drainage Engineering pp. 155.
JAMREY P.K., NIGAM G.K. 2018. Performance evaluation of drip irrigation systems. The Pharma Innovation Journal. Vol 7(1) p. 346–348.
KELLER J., BLIESNER R. 1990. Sprinkle and trickle irrigation. New York. Springer Science and Business Media. ISBN 9780442246457 pp. 652.
LAMM F., AYARS J., NAKAYAMA F. 2007. Microirrigation for crop production. Design, operation, and management. United Kingdom. Elsevier. ISBN 0-444-50607-1 pp. 642.
MAHROUS A., HANAFY M., BAKEER G., BAZARAA A. 2008. Computer program for predicting emission uniformity of odd-shaped sub-units in drip irrigation system. Misr Journal of Agricultural. Engineering. Irrigation and drainage. Vol. 25(4) p. 1240–1255.
MIRZAEI F., HATAMI M., MOUSAZADEH F. 2009. A simple model to estimate wetted soil volume from the trickle by use of the dimensional analysis technique. Advances in Water Resources and Hydraulic Engineering p. 345–352.
MOSTAFA E. 2004. Correction factor for friction head loss through lateral and Manifold. Eighth International Water Technology Conference IWTC8. Alexandria, Egypt p. 735–749.
PHILIPOVA N., NICHEVA O., KAZANDJIEV V., CHILIKOVA-LUBO¬MIROVA M. 2012. A computer program for drip irrigation system design for small plots. Journal of Theoretical and Applied Mechanics. Vol. 42. Iss. 4 p. 3–18. DOI 10.2478/v10254-012-0016-x.
PHOCAIDES A. 2001. Technical handbook on pressurized irrigation techniques. Rome. Food and Agriculture Organization of the United Nations (FAO). ISBN 9251045321 pp. 208.
PHOCAIDES A. 2007. Handbook on pressurized irrigation techniques. 2nd ed. Rome. Food and Agriculture Organization of the United Nations (FAO). ISBN 978-92-5-105817-6 pp. 269.
SWAMEE P., RATHIE P. 2005. Discussion of “Direct equations for hydraulic jump elements in rectangular horizontal channel”. Journal of Irrigation and Drainage Engineering. Vol. 131(3) p. 300–302. DOI 10.1061/(ASCE)0733-9437(2005)131:3 (298).
USDA 1984. Trickle irrigation. Sect. 15. Chapt. 7. In: National engineering handbook. Part 623. Irrigation [online]. United States Department of Agriculture. [Access 10.03.2020]. Available at: http://irrigationtoolbox.com/NEH/Part623_Irrigation/neh15-07.pdf
USDA 2013. Micro-irrigation. Chapt. 7. National engineering handbook. Part 623. Irrigation [online]. United States Department of Agriculture. [Access 10.03.2020]. Available at: https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=34517.wba

Go to article

Authors and Affiliations

Wafaa Abo Zied
1
ORCID: ORCID
Mohammed Hanafy
1
Ehab Mostafa
1
ORCID: ORCID
Ahmed Abo Habssa
2

  1. Cairo University, Faculty of Agriculture, Agricultural Engineering Department, Gamaa Street 1, Giza, 12613, Egypt
  2. Helwan University, Mataria Faculty of Engineering, Mechanical Power Department, Helwan, Egypt
Download PDF Download RIS Download Bibtex

Abstract

CropSyst (Cropping Systems Simulation) is used as an analytic tool for studying irrigation water management to increase wheat productivity. Therefore, two field experiments were conducted to 1) calibrate CropSyst model for wheat grown under sprinkler and drip irrigation systems, 2) to use the simulation results to analyse the relationship between applied irrigation amount and the resulted yield and 3) to simulate the effect of saving irrigation water on wheat yield. Drip irrigation system in three treatments (100%, 75% and 50% of crop evapotranspiration – ETc) and under sprinkler irrigation system in five treatments (100%, 80%, 60%, 40%, and 20% of ETc) were imposed on these experiments. Results using CropSyst calibration revealed-that results of using CropSyst calibration revealed that the model was able to predict wheat grain and biological yield, with high degree of accuracy. Using 100% ETc under drip system resulted in very low water stress index (WSI = 0.008), whereas using 100% ETc sprinkler system resulted in WSI = 0.1, which proved that application of 100% ETc enough to ensure high yield. The rest of deficit irrigation treatments resulted in high yield losses. Simulation of application of 90% ETc not only reduced yield losses to either irrigation system, but also increased land and water productivity. Thus, it can be recommended to apply irrigation water to wheat equal to 90% ETc to save on the applied water and increase water productivity.

Go to article

Authors and Affiliations

Tahany Noreldin
Samiha Ouda
Oussama Mounzer
Magdi T. Abdelhamid
Download PDF Download RIS Download Bibtex

Abstract

Improving water productivity (WP) through deficit irrigation is crucial in water-scarce areas. To practice deficit irriga-tion, the optimum level of water deficit that maximizes WP must be investigated. In this study, a field experiment was con-ducted to examine WP of the three treatments at available soil water depletion percentage (����) of 25% (reference), 45% and 65% using a drip irrigation system. Treatments were arranged in a randomized complete block design. The water deficit was allowed throughout the growth stages after transplanting except for the first 15 days of equal amounts of irrigations during the initial growth stage and 20 days enough spring season rainfall during bulb enlargement periods. Physical WP in terms of water use efficiency (WUEf) for treatments T1, T2, and T3 was 9.44 kg∙m–3, 11 kg∙m–3and 10.6 kg∙m–3 for mar-ketable yields. The WUEf and economic water productivity were significantly improved by T2 and T3. The WUEf differ-ence between T2 and T3 was insignificant. However, T2 can be selected as an optimal irrigation level. Hence, deficit irriga-tion scheduling is an important approach for maximizing WP in areas where water is the main constraint for crop produc-tion. The planting dates should be scheduled such that the peak water requirement periods coincide with the rainy system.

Go to article

Authors and Affiliations

Kassahun B. Tadesse
Eyasu Y. Hagos
Nata T. Tafesse
Megersa O. Dinka
ORCID: ORCID

This page uses 'cookies'. Learn more