Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a short description of the model of the phenomenon of droplet spreading in presence of a liquid film, as well as the experimental facility, calculations methodology and results of experimental research concerning determination of the boundary angle at which droplet begins to slide on the horizontal or inclined surface of the plate. Values of boundary angle have been applied to estimate the microscopic dynamic advanced angle of the droplet on the flat surface in presence of a liquid film.
Go to article

Authors and Affiliations

Zbigniew Zapałowicz
Download PDF Download RIS Download Bibtex

Abstract

The present study investigates the 2D numerical analogies to the changes of the droplet shapes during the freefall for a wide range of droplet sizes through the stagnation air. The freefall velocity, shape change due to frictional force during free-fall is studied for different considered cases. With the elapse of time, a droplet with a larger initial diameter is changing its original shape more compared to droplets with a smaller diameter. In addition, the spreading of the droplet during the freefall seems more rapid for the larger-diameter droplet. When a droplet with an initial diameter of 15 mm starts to fall with gravitational force, the diameter ratio is decreasing for droplets with higher density and surface tension while droplets having lower density and surface tension show a diameter ratio greater than one. The spreading and splashing of the droplet on a solid surface and liquid storage at the time of impact are much influenced by the freefall memories of the droplet during the freefall from a certain height. These freefall memories are influenced by the fluid properties, drag force, and the freefall height. However, these freefall memories eventually regulate the deformation of the droplet during the freefall.
Go to article

Bibliography

[1] X. Cao, Y. Ye, Q. Tang, E. Chen, Z. Jiang, J. Pan, and T. Guo. Numerical analysis of droplets from multinozzle inkjet printing. The Journal of Physical Chemistry Letters, 11(19):8442–8450, 2020. doi: 10.1021/acs.jpclett.0c02250.
[2] H. Wijshoff. Drop dynamics in the inkjet printing process. Current Opinion in Colloid & Interface Science, 36:20–27, 2018. doi: 10.1016/j.cocis.2017.11.004.
[3] W. Zhou, D. Loney, A.G. Fedorov, F.L. Degertekin, and D.W. Rosen. Shape evolution of droplet impingement dynamics in ink-jet manufacturing. Proceedings for the 2011 International Solid Freeform Fabrication Symposium, pages 309–325, Austin, USA, 2011. doi: 10.26153/tsw/15297.
[4] L. Mouzai and M. Bouhadef. Water drop erosivity: Effects on soil splash. Journal of Hydraulic Research, 41(1):61–68, 2003. doi: 10.1080/00221680309499929.
[5] M. Hajigholizadeh, A.M. Melesse, and H.R. Fuentes. Raindrop-induced erosion and sediment transport modelling in shallow waters: A review. Journal of Soil and Water Science, 1(1):15–25, 2018. doi: 10.36959/624/427.
[6] P.C. Ekern. Raindrop impact as the force initiating soil erosion. Soil Science Society of America Journal, 15(C):7–10, 1951. doi: 10.2136/sssaj1951.036159950015000C0002x.
[7] R. Andrade, O. Skurtys, and F. Osorio. Drop impact behavior on food using spray coating: Fundamentals and applications. Food Research International, 54(1):397–405, 2013. doi: 10.1016/j.foodres.2013.07.042.
[8] M. Toivakka. Numerical investigation of droplet impact spreading in spray coating of paper. Proceedings of the 2003 Spring Advanced Coating Fundamentals Symposium, Atlanta, USA, 2003.
[9] A. Prasad and H. Henein. Droplet cooling in atomization sprays. Journal of Materials Science, 43(17):5930–5941, 2008. doi: 10.1007/s10853-008-2860-2.
[10] W. Jia and H.-H. Qiu. Experimental investigation of droplet dynamics and heat transfer in spray cooling. Experimental Thermal and Fluid Science, 27(7):829–838, 2003. doi: 10.1016/S0894-1777(03)00015-3.
[11] G. Duursma, K. Sefiane, and A. Kennedy. Experimental studies of nanofluid droplets in spray cooling. Heat Transfer Engineering, 30(13):1108–1120, 2009. doi: 10.1080/01457630902922467.
[12] W.-C. Qin, B.-J. Qiu, X.-Y. Xue, C. Chen, Z.-F. Xu, and Q.-Q. Zhou. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection, 85:79–88, 2016. doi: 10.1016/j.cropro.2016.03.018.
[13] S. Chen, Y. Lan, Z. Zhou, F. Ouyang, G. Wang, X. Huang, X. Deng, and S. Cheng. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV. Agronomy, 10(2):195, 2020. doi: 10.3390/agronomy10020195.
[14] D.T. Sheppard. Spray Characteristics of Fire Sprinklers. Ph.D. Thesis, Northwestern University, Evanston, USA, June 2002.
[15] H. Liu, C.Wang, I.M. De Cachinho Cordeiro, A.C.Y. Yuen, Q. Chen, Q.N. Chan, S. Kook, and G.H. Yeoh. Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. Journal of Building Engineering, 28:100999, 2020. doi: 10.1016/j.jobe.2019.100999.
[16] D.C. Blanchard. The behavior of water drops at terminal velocity in air. Eos, Transactions American Geophysical Union, 31(6):836–842, 1950. doi: 10.1029/TR031i006p00836.
[17] H.R. Pruppacher and K.V. Beard. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quarterly Journal of the Royal Meteorological Society, 96(408):247–256, 1970. doi: 10.1002/qj.49709640807.
[18] H.R. Pruppacher and R.L. Pitter. A semi-empirical determination of the shape of cloud and rain drops. Journal of the Atmospheric Sciences, 28(1):86–94, 1971. doi: 10.1175/1520-0469(1971)0280086:ASEDOT>2.0.CO;2.
[19] K.V. Beard and C. Chuang. A new model for the equilibrium shape of raindrops. Journal of the Atmospheric Sciences, 44(11):1509–1524, Jun. 1987. doi: 10.1175/1520-0469(1987)0441509:ANMFTE>2.0.CO;2.
[20] É.Reyssat, F. Chevy, A.L. Biance, L. Petitjean, and D. Quéré. Shape and instability of free-falling liquid globules. Europhysics Letters, 80(3):34005, 2007. doi: 10.1209/0295-5075/80/34005.
[21] R. Clift, J.R. Grace, and M.E. Weber. Bubbles, Drops and Particles. Academic Press, 1978.
[22] S.-C. Yao and V.E. Schrock. Heat and mass transfer from freely falling drops. Journal of Heat Transfer, 98(1):120–126, 1976. doi: 10.1115/1.3450453.
[23] T.J. Horton, T.R. Fritsch, and R.C. Kintner. Experimental determination of circulation velocities inside drops. The Canadian Journal of Chemical Engineering, 43(3):143–146, 1965. doi: 10.1002/cjce.5450430309.
[24] R.H. Magarvey and B.W. Taylor. Free fall breakup of large drops. Journal of Applied Physics, 27(10):1129–1135, 1956. doi: 10.1063/1.1722216.
[25] M.N. Chowdhury, F.Y. Testik, M.C. Hornack, and A.A. Khan. Free fall of water drops in laboratory rainfall simulations. Atmospheric Research, 168:158–168, 2016. doi: 10.1016/j.atmosres.2015.08.024.
[26] M. Abdelouahab and R. Gatignol. Study of falling water drop in stagnant air. European Journal of Mechanics - B/Fluids, 60:82–89, 2016. doi: 10.1016/j.euromechflu.2016.07.007.
[27] J.H. van Boxel. Numerical model for the fall speed of raindrops in a rainfall simulator. I.C.E Special Report, 1998/1, 77–85,
[28] A.K. Kamra and D.V Ahire. Wind-tunnel studies of the shape of charged and uncharged water drops in the absence or presence of an electric field. Atmospheric Research, 23(2):117–134, 1989. doi: 10.1016/0169-8095(89)90003-3.
[29] M. Thurai and V.N. Bringi. Drop axis ratios from a 2D video disdrometer. Journal of Atmospheric and Oceanic Technology, 22(7):966–978, 2005. doi: 10.1175/JTECH1767.1.
[30] C. Josserand and S.T. Thoroddsen. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 48:365–391, 2016. doi: 10.1146/annurev-fluid-122414-034401.
[31] J. Eggers, M.A. Fontelos, C. Josserand, and S. Zaleski. Drop dynamics after impact on a solid wall: Theory and simulations. Physics of Fluids, 22(6):062101, 2010. doi: 10.1063/1.3432498.
[32] S. Chandra and C.T. Avedisian. On the collision of a droplet with a solid surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 432(1884):13–41, 1991. doi: 10.1098/rspa.1991.0002.
[33] O.G. Engel. Waterdrop collisions with solid surfaces. Journal of Research of the National Bureau of Standards, 54(5):281–298, 1955. doi: 10.6028/jres.054.033.
[34] I.V. Roisman, R. Rioboo, and C. Tropea. Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 458(2022):1411–1430, 2002. doi: 10.1098/rspa.2001.0923.
[35] Y. Renardy, S. Popinet, L. Duchemin, M. Renardy, S. Zaleski, C. Josserand, M.A. Drumright-Carke, D. Richard, C. Clanet, and D. Quéré. Pyramidal and toroidal water drops after impact on a solid surface. Journal of Fluid Mechanics, 484:69–83, 2003. doi: 10.1017/S0022112003004142.
[36] D. Bartolo, F. Bouamrirene, É. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhysics Letters, 74(2):299–305, 2006. doi: 10.1209/epl/i2005-10522-3.
[37] D. Bartolo, C. Josserand, and D. Bonn. Singular jets and bubbles in drop impact. Physical Review Letters, 96:124501, 2006. doi: 10.1103/PhysRevLett.96.124501.
[38] C. Clanet, C. Béguin, D. Richard, and D. Quéré. Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 517:199–208, 2004. doi: 10.1017/S0022112004000904.
[39] L.H.J. Wachters, L. Smulders, J.R. Vermeulen, and H.C. Kleiweg. The heat transfer from a hot wall to impinging mist droplets in the spheroidal state. Chemical Engineering Science, 21(12):1047–1056, 1966. doi: 10.1016/0009-2509(66)85042-X.
[40] C.O. Pedersen. An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface. International Journal of Heat and Mass Transfer, 13(2):369–381, 1970. doi: 10.1016/0017-9310(70)90113-4.
[41] M.A. Styricovich, Y.V. Baryshev, G.V. Tsiklauri and M E. Grigorieva. The mechanism of heat and mass transfer between a water drop and a heated surface. Proceedings of the Sixth International Heat Transfer Conference, Vol. 1, pages 239-243, Toronto, Canada, August 7-11, 1978.
[42] P. Savic and G.T. Boult. The fluid flow associated with the impact of liquid drops with solid surfaces. Proceedings of Heat Transfer Fluid Mechanics Institution, 43-84, 1957.
[43] S.E. Hinkle. Water drop kinetic energy and momentum measurement considerations. Applied Engineering in Agriculture, 5(3):386–391, 1989. doi: 10.13031/2013.26532.
[44] C.D. Stow and R.D. Stainer. The physical products of a splashing water drop. Journal of Meteorological Society of Japan, 55(5):518–532, 1977.
[45] Z. Levin and P.V. Hobbs. Splashing of water drops on solid and wetted surfaces, Hydrodynamics and charge separation. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 269(1200):555–585, 1971. doi: 10.1098/rsta.1971.0052.
[46] C.D. Stow, M.G. Hadfield. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 37(1755):419–441, 1981. doi: 10.1098/rspa.1981.0002.
[47] C. Mundo, M. Sommerfeld, and C. Tropea. Droplet-wall collisions: Experimental studies of the deformation and breakup process. I nternational Journal of Multiphase Flow, 21(2):151–173, 1995. doi: 10.1016/0301-9322(94)00069-V.
[48] M. Bussmann, S. Chandra, and J. Mostaghimi. Modeling the splash of a droplet impacting a solid surface. Physics of Fluids, 12(12):3121–3132, 2000. doi: 10.1063/1.1321258.
[49] L. Xu, W.W. Zhang, and S.R. Nagel. Drop splashing on a dry smooth surface. Physical Review Letters, 94(18):184505, 2005. doi: 10.1103/PhysRevLett.94.184505.
[50] B.T. Helenbrook and C.F. Edwards. Quasi-steady deformation and drag of uncontaminated liquid drops. International Journal of Multiphase Flow, 28(10):1631–1657, 2002. doi: 10.1016/S0301-9322(02)00073-3.
[51] J.Q. Feng. A deformable liquid drop falling through a quiescent gas at terminal velocity. Journal of Fluid Mechanics, 658:438–462, 2010. doi: 10.1017/S0022112010001825.
[52] J.Q. Feng and K.V. Beard. Raindrop shape determined by computing steady axisymmetric solutions for Navier-Stokes equations. Atmospheric Research, 101(1–2):480–491, 2011. doi: 10.1016/j.atmosres.2011.04.012.
[53] J. Han and G. Tryggvason. Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Physics of Fluids, 11(12):3650–3667, 1999. doi: 10.1063/1.870229.
[54] J. Han and G. Tryggvason. Secondary breakup of a axisymmetric liquid drops. II. Impulsive acceleration. Physics of Fluids, 13(6):1554–1565, 2001. doi: 10.1063/1.1370389.
[55] P. Khare and V. Yang. Breakup of non-Newtonian liquid droplets. 44th AIAA Fluid Dynamics Conference, Atlanta, USA, 16-20 June 2014. doi: 10.2514/6.2014-2919.
[56] M. Sussman and E.G. Puckett. A Coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162(2):301–337, 2000. doi: 10.1006/jcph.2000.6537.
[57] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics, 31:567–603, 1999. doi: 10.1146/annurev.fluid.31.1.567.
[58] S. Shin and D. Juric. Simulation of droplet impact on a solid surface using the level contour reconstruction method. Journal of Mechanical Science and Technology, 23:2434–2443, 2009. doi: 10.1007/s12206-009-0621-z.
[59] M. García Pérez and E. Vakkilainen. A comparison of turbulence models and two and three dimensional meshes for unsteady CFD ash deposition tools. Fuel, 237:806–811, 2019. doi: 10.1016/j.fuel.2018.10.066.
[60] M. Mezhericher, A. Levy, and I. Borde. Modeling of droplet drying in spray chambers using 2D and 3D computational fluid dynamics. Drying Technology, 27(3):359–370, 2009. doi: 10.1080/07373930802682940.
[61] S. Afkhami and M. Bussmann. Height functions for applying contact angles to 2D VOF simulations. International Journal for Numerical Methods in Fluids, 57(4):453-472, 2008. doi: 10.1002/fld.1651.
[62] J. Zheng, J. Wang, Y. Yu, and T. Chen. Hydrodynamics of droplet impingement on a thin horizontal wire. Mathematical Problems in Engineering, 2018:9818494, 2018. doi: 10.1155/2018/9818494.
[63] J. Thalackottore Jose and J.F. Dunne. Numerical simulation of single-droplet dynamics, vaporization, and heat transfer from impingement onto static and vibrating surfaces. Fluids, 5(4):188, 2020. doi: 10.3390/fluids5040188.
[64] H. Liu. Science and Engineering of Droplets: Fundamentals and Applications. Noyes Publications, USA, 1999.
Go to article

Authors and Affiliations

Abid Hasan Rafi
1
ORCID: ORCID
Mohammad Rejaul Haque
1
ORCID: ORCID
Dewan Hasan Ahmed
1
ORCID: ORCID

  1. Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
Download PDF Download RIS Download Bibtex

Abstract

The effect of emulsifier volume on emulsion system stability of plant origin being the basis of diet supplements for animals in winter season was analyzed. For this purpose, measurements of the backscattered light intensity as the function of the measuring cell height were conducted with a Turbiscan LAB optical analyzer. System stability was analyzed on the basis of Turbiscan Stability Index values. A Helos laser analyzer and a Nikon Eclipse E400 POL optical microscope were used to investigate drop size distribution and analyze microscopic pictures. It was shown that emulsion with 10% (w/w) of the emulsifier was the most stable one.

Go to article

Authors and Affiliations

Anna Zalewska
Joanna Kowalik
Ireneusz Grubecki
Download PDF Download RIS Download Bibtex

Abstract

The study was conducted at the University of Nebraska Pesticide Application and Technology Laboratory in North Platte, Nebraska in July 2015. Two application volume rates (100 and 200 l · ha−1) and three nozzle types (XR, AIXR, TTI) were selected at two flow rates (0.8 and 1.6 l · min−1) and at a single application speed of 7.7 km · h−1. Each collector type [Mylar washed (MW), Mylar image analysis (MIA), water-sensitive paper (WSP), and Kromekote (KK)] was arranged in a randomized complete block design. Each nozzle treatment was replicated twice, providing six cards of each collector type for each nozzle treatment. A water + 0.4% v/v Rhodamine WT spray solution was applied, given the fluorescent and visible qualities of Rhodamine, which allows it to be applied over all the collector types. MW had the highest coverage at 18.3% across nozzle type, followed by WSP at 18%, KK at 12% and lastly by MIA at 4%. MW resulted in a 58% increase in coverage, WSP in a 56% increase, and KK only an increase of 39% when the volume rate was doubled from 100 l · ha−1 to 200 l · ha−1 across nozzle type. MW coverage was similar to KK for half of the nozzles (XR 11002, XR 11004, AIXR 11002). Droplet number density fixed effects were all significant for nozzle type and collector type (p < 0.001) as was the interaction of nozzle type and collector type (p < 0.001). Results from this study suggest a strong correlation to data produced with WSP and MW collectors, as there was full agreement between both types except for the TTI 11004. Using both collector types in the same study would allow for a visual understanding of the distribution of the spray, while also giving an idea of the concentration of that distribution.

Go to article

Authors and Affiliations

J. Connor Ferguson
ORCID: ORCID
Andrew J. Hewitt
Chris C. O’Donnell
Greg R. Kruger
Download PDF Download RIS Download Bibtex

Abstract

This paper concerns analytical considerations on a complex phenomenon which is diffusive-inertial droplet separation from the twophase vapour-liquid flow which occurs in many devices in the power industry (e.g. heat pumps, steam turbines, organic Rankine cycles, etc.). The new mathematical model is mostly devoted to the analysis of the mechanisms of diffusion and inertia influencing the distance at which a droplet separates from the two-phase flow and falls on a channel wall. The analytical model was validated based on experimental data. The results obtained through the analytical computations stay in a satisfactory agreement with available literature data.
Go to article

Bibliography

[1] Sedler B., Mikielewicz J.: A simplified analytical flow-boiling crisis mode. Trans. Inst. Fluid-Flow Mach. 76(1978), 3–10 (in Polish).
[2] Walley P., Hutchinson P., Hewitt G.F.: The calculation of critical heat flux in forced convection boiling. In: Proc. 5th Int. Heat Transfer Conf., Vol. II, Tokyo 1974.
[3] Kubski P., Mikielewicz J.: Approximated analysis of the drag force of the droplet evaporating within the fluid flow. Trans. Inst. Fluid-Flow Mach. 81(1981), 53–66 (in Polish).
[4] Mikielewicz J.: A simplified analysis of Magnus lift force impact on a small droplets separation from the two-phase flow. Trans. Inst. Fluid-Flow Mach. 75(1978), 63–71 (in Polish).
[5] Ranhiainen P.O., Stachiewicz J.W.: On the deposition of small particles from turbulent streams. J. Heat Transfer. 92(1970), 1, 169–177.
[6] Dolna O., Mikielewicz J.: Separation of droplets in the field of a boundary layer. J. Eng. Phys. Thermophys. 92(2019), 5, 1202–1206.
[7] Pourhashem H., Owen M.P., Castro N.D., Rostami A.A.: Eulerian modeling of aerosol transport and deposition in respiratory tract under thermodynamic equilibrium condition. J. Aerosol Sci. 141(2020), 105501.
[8] Worth Longest P., Xi J.: Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J. Aerosol Sci. 38(2007), l, 111–130.
[9] Wang Y., Yu Y., Hu D., Xu D., Yi L., Zhang Y., Zhang S.: Improvement of drainage structure and numerical investigation of droplets trajectories and separation efficiency for supersonic separators. Chem. Eng. Process. – Process Intensific. 151(2020), 107844.
[10] Ganic E.N., Rohsenow W.M.: Dispersed flow heat transfer. Int. J. Heat Mass Tran. 20(1977), 8, 855-866.
[11] Beek W.J., Muttzal K.M.: Transport Phenomena. Wiley 1975.
[12] Hutchinson P., Hewitt G.F., Ducler A.E.: Deposition of liquid or solid dispersions from turbulent gas stream: a stochastic model. Chem. Eng. Sci. 26(1971), 3, 419–439.
[13] Farmer R.A., Griffith P., Rohsenow W.M.: Liquid droplet deposition in twophase flow. J. Heat Transfer 92(1970), 4, 587–594.
[14] Forney L.J., Spielman L.A.: Deposition of coarse aerosols from turbulent flow. J. Aerosol Sci. 5(1974), 3, 257–271.
[15] Friedlander S.K., Johnstone H.F.: Deposition of suspended particles from turbulent gas streams. Ind. Eng. Chem. 49(1957), 7, 1151–1156.
[16] Ilori T.A.: Turbulent deposition of particles inside pipes. PhD thesis, Univ. Minnesota, Minneapolis – Saint Paul 1971.
[17] Sehmel G.A.: Aerosol deposition from turbulent airstreams in vertical conduits. Pacific Northwest Lab. Tech. Rep. BNWL-578, Richland 1968.
[18] McCoy D.D., Hanratty T.J.: Rate of deposition of droplets in annular two-phase flow. Int. J. Multiphas. Flow 3(1977), 4, 319–331.
Go to article

Authors and Affiliations

Jarosław Mikielewicz
1
Oktawia Dolna
1
Roman Kwidziński
1

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

In agriculture, the mixing of pesticides in tanks is a common practice. However, it is necessary to previse possible physical-chemical implications of this practice, which may affect the efficiency of the treatments performed. Therefore, the objective of this study was to evaluate the effects of the addition of acaricide to insecticidal spray mixtures on the formation of spray droplets and the interaction with citrus leaves. The experimental design was totally randomized, in a (2 × 3 + 1) factorial scheme for seven treatments. Factor A corresponded to the spray mixture used (isolate or in the mixture). Factor B corresponded to the insecticides tested (lambda-cyhalothrin + thiamethoxam, phosmet, and imidacloprid) and the control consisted of a spray mixture with spirodiclofen only. Nine replications were performed for characterization of the spray droplet size spectrum and four replications for the analysis of the surface tension and the contact angle. The mixture of pesticides showed positive results in terms of application safety. The addition of acaricide to insecticide spray mixtures reduced the surface tension and contact angle of droplets on the adaxial surface of orange leaves. There was an increment in volume median diameter (VMD), a significant reduction in the volume of droplets with drift-sensitive size and improvement in the uniformity of droplet size. Therefore, the addition of acaricide to an insecticide spray mixture positively influenced spray droplet formation and the interaction with citrus leaves providing better coverage and droplet size fractions with an appropriate size for safe and efficient application.

Go to article

Authors and Affiliations

Jaqueline Franciosi Della Vechia
Renata Thaysa Santos
Fabiano Griesang
Cícero Mariano Santos
Marcelo Costa Ferreira
Daniel Junior Andrade
Download PDF Download RIS Download Bibtex

Abstract

There is an ongoing search for technologies that guarantee soybean productivity. Among them, the application of phytosanitary products stands out, since the sprayer is the most required implement during the agricultural production cycle and each error, in practice, represents a loss in the production process. With this in mind, the objective of this work was to evaluate the volume captured and the characteristics of the application in the different thirds of soybean plants with variations in hydraulic nozzles and spray volumes, as well as the use of electrification of the drops. To this end, a field experiment was conducted during the 2018/2019 summer harvest in an experimental area at the University of Rio Verde. The experimental design used was randomized blocks in a factorial scheme (3 × 4), with four repetitions, in which the first factor consisted of three variations of spray nozzles (simple fan, hollow cone and hollow cone with electrification of the drops). The second factor involved four application rates (50, 100, 150 and 200 l · ha–1). The variables evaluated were the number of drops per cm–2, percentage of coverage, volume median diameter (VMD) and the captured volume (μl · cm–2). According to the results, for the upper thirds, an increase in the application rate increased the volume of captured syrup. However, for the lower third, the factors evaluated did not interfere in this characteristic. The hydraulic tips influenced the density of droplets in the three thirds and the coverage only in the lower one. The increasing rates of application, increases the density of drops and percentage of coverage in the different thirds of the plants. The evaluated factors had no effect on the syrup distribution on the median abaxial surface of the leaves.
Go to article

Bibliography


Baldin E.L.L., Cruz P.L., Morando R., Silva I.F., Bentivenha J.P.F., Tozin L.R.S., Rodrigues T.M. 2017. Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. Journal of Economic Entomology 110 (4): 1869–1876. DOI: 10.1093/ jee/tox143
Bayer T., Costa I.F.D., Lenz G., Zemolin C., Marques L.N., Stefanelo M.S. 2011. Equipamento de pulverização aérea e taxas de aplicação de fungicida na cultura do arroz irrigado. [Spraying equipment and rates of fungicide application in irrigated rice]. Revista Brasileira de Engenharia Agrícola e Ambiental 15 (2): 192–198. DOI: https://doi.org/10.1590/ S1415-43662011000200007
Belo M.S.S.P., Pignati W., Dores E.F.G.C., Moreira J.C.M., Peres F. 2012. Uso de agrotóxicos na produção de soja do Estado do Mato Grosso: um estudo preliminar de riscos ocupacionais e ambientais. [Pesticide use in soybean pro-duction in Mato Grosso state, Brazil: A preliminary occupational and environmental risk characterization]. Revista Brasileira Saude Ocupacional 37 (125): 78–88. DOI: https://doi.org/10.1590/S0303-76572012000100011
Boschini L., Robinson L.C., Macedo Junior E.K., Guimaraes V.F.G. 2008. Avaliacao da deposicao da calda de pulverizacao em funcao da vazao e do tipo de bico hidraulico na cultura da soja. [Evaluation the spraying syrup deposition in function of the beak type and the flow, in soybean]. Acta Scientiarum. Agronomy 30 (2): 171–175. DOI: https://doi.org/10.4025/actasciagron.v30i2.1789
Chaim A., Camargo Neto J., Pessoa M.C.P.Y. 2006. Uso do programa computacional Gotas para avaliacao da deposicao de pulverizacao aerea sob diferentes condicoes climaticas. [Use of the gotas software for evaluation of the deposition of aerial spraying under different climatic conditions]. Research and Development Bulletin 39: 18. Climate data. 2020. Climate Rio Verde. Available on: https://pt.climate-data.org/america-do-sul/brasil/goias/rio-verde- 4473/. [Accessed: 13 July 2020]
Cunha J.P.A.R., Marques R.S., Alves G.S. 2016. Deposicao da calda na cultura da soja em funcao de diferentes pressoes de trabalho e pontas de pulverizacao. [Spray deposition on soybean crop as a function of different service pressures and spray nozzles]. Revista Ceres 63 (6): 761–768. DOI: https://doi.org/10.1590/0034-737x201663060003
Cunha J.P.A.R., Reis E.F., Santos R.O. 2006. Controle quimico de ferrugem asiatica da soja em funcao de ponta de pulverizacao e de volume de calda. [Chemical control of Asian soybean rust due to spray tip and spray volume]. Ciencia Rural 36 (5): 1360–1366. DOI: https://doi.org/10.1590/ S0103-84782006000500003
Czaczyk Z., Kruger G., Hewitt A. 2012. Droplet size classification of air induction flat fan nozzles. Journal of Plant Protection Research 52 (4): 415–420. DOI: https://doi.org/10.2478/10045-012-0068-6
Durao C.F., Boller W. 2017. Spray nozzles performance in fungicides applications for Asian soybean rust control. Engenharia Agricola 37 (4): 709–716. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n4p709-716/2017
Farinha J.V., Martins D., Costa N.V., Domingos V.D. 2009. Deposicao da calda de aplicacao em cultivares de soja no estadio R1. Ciencia Rural 39 (6): 1738–1744. DOI: https://doi.org/10.1590/S0103-84782009000600016
Fehr W.R., Caviness C.E. 1997. Stages of Soybean Development. Ames: Iowa State University, USA, 12 pp. (Special Report, 80).
Fritz B.K., Hoffman W.C., Czaczyk Z., Bagley W., Kruger G., Henry R. 2012. Measurement and classification methods using the ASAE S572.1 reference nozzles. Journal of Plant Protection Research 52 (4): 447–457. DOI: https://doi.org/10.2478/v10045-012-0072x
Furlan S.H., Carvalho F.K., Antuniassi U.R. 2018. Strategies for the control of Asian soybean rust (Phakopsora pachyrhizi) in Brazil: fungicide resistance and application efficacy. Outlooks on Pest Management 29 (3): 120–123. DOI: https://doi.org/10.1564/v29_jun_05
Law S.E. 2014. Electrostatically charged sprays. In: “Pesticide Application Methods” (G.A. Matthews, ed.). 4th ed. Chichester: John Wiley & Sons, USA, 545 pp. DOI: https://doi.org/10.1590/ S1415-43662011000200007
Negrisoli M.M., Raetano C.G., Souza D.M., Souza F.M.S., Bernardes L.M., Bem Junior L., Rodrigues D.M., Sartori M.M.P. 2019. Performance of new flat fan nozzle design in spray deposition, penetration and control of soybean rust. European Journal of Plant Pathology 155 (7): 1–13. DOI: http://doi.org/10.1007/s10658-019-01803-1
Nidera. 2020. NS 7709 IPRO. Available on: http://www.niderasementes. com.br/produto/ns-7709-ipro.aspx. [Accessed: 13 July 2020]
Omoto P.H., Tomaz R.S., Prado E.P. 2017. Quantificacao dos depositos da pulverizacao em funcao da tecnica de aplicacao na cultura da soja. [Quantification of spray deposits as a function of soybean application technique]. Forum Ambiental da Alta Paulista 13 (7): 120–134. DOI: http://dx.doi.org/10.17271/1980082713720171732
Patel M.K., Praveen B., Sahoo H.K., Patel B., Kumar A., Singh M., Nayak M.K., Rajan P. 2017. An advance air-induced air-assisted electrostatic nozzle with enhanced performance. Computers and Electronics in Agriculture 135 (4): 280–288. DOI: https://doi.org/10.1016/j.compag.2017.02.010
Sasaki R.S., Teixeira M.M., Fernandes H.C., Monteiro P.M.B., Rodrigues D.E. 2013. Deposicao e uniformidade de distribuicao de calda de aplicacao em plantas de cafe utilizando a pulverizacao eletrostatica. [Deposition and uniformity of spray syrup distribution in coffee plants using electrostatic spraying]. Ciencia Rural 43 (9): 1605–1609. DOI: https://doi.org/10.1590/S0103-84782013000900011
Scudeler F., Raetano C.G. 2006. Spray deposition and losses in potato as a function of air-assistance and sprayer boom angle. Scientia Agricola 63 (6): 515–521. DOI: https://doi.org/10.1590/S0103-90162006000600001
Silva J.E.R., Cunha J.P.A.R., Nomelini Q.S.S. 2014a. Deposicao de calda em folhas de cafeeiro e perdas para o solo com diferentes taxas de aplicacao e pontas de pulverizacao. [Deposition of spray applied in coffee leaves with different rates and spray nozzles]. Revista Brasileira de Engenharia Agricola e Ambiental 18 (12): 1302–1306. DOI: https://doi. org/10.1590/1807-1929/agriambi.v18n12p1302-1306
Silva B.M.B., Ruas R.D.A., Sichocki D., Dezordi L.R., Caixeta L.F. 2014b. Deposicao da calda de pulverizacao aplicada com pontas de jato plano em diferentes partes da planta de soja (Glycine max) e milho (Zea mays). [Spray spray deposition applied with flat spray tips to different parts of the soybean plant (Glycine max) and corn (Zea mays)]. Engenharia na Agricultura 22 (1): 17–27. DOI: https://doi.org/10.13083/reveng.v22i1.406
Souza D.M., Raetano C.G., Moreira C.A.F., Burno R.C.O.F., Carvalho M.M. 2019. Effects of news sowing arrangements and air assistance on fungicide spray distribution on soybean crop. Acta Scientiarum. Agronomy 41 (1): e42700. DOI: https://doi.org/10.4025/actasciagron.v41i1.42700
Tavares R.M., Silva J.E.R., Alves G.S., Alves T.C., Silva S.M.,
Cunha J.P.A.R. 2017. Tecnologia de aplicacao de inseticidas no controle da lagarta-do-cartucho na cultura do milho. [Insecticide application technology on fall armyworm control in corn]. Revista Brasileira de Milho e Sorgo 16 (1): 30–42. DOI: https://doi.org/10.18512/1980-6477/rbms.v16n1p30-42%20
Van Zyl J.G., Fourie P.H., Schutte G.C. 2013. Spray deposition assessment and benchmarks for control of Alternaria brown spot on mandarin leaves with copper oxychloride. Crop Protection 46 (4): 80–87. DOI: https://doi.org/10.1016/j. cropro.2012.12.005
Viana R.G., Ferreira L.R., Ferreira M.C., Teixeira M.M., Rosell J.R., Tuffi-Santos L.D., Machado A.F.L. 2010. Distribuicao volumetrica e espectro de gotas de pontas de pulverizacao de baixa deriva. [Volumetric distribution and droplet spectrum by low drift spray nozzles]. Planta Daninha 28 (2): 439–446. DOI: https://doi.org/10.1590/S0100-83582010000200024
Zhou Y., Qi L., Jia S., Zheng X., Meng X., Tang Z., Shen C. 2012. Development and application prospects of pneumatic electrostatic sprayer in orchard. Asian Agricultural Research 4 (1): 78–80. DOI: 10.22004/ag.econ.133110
Go to article

Authors and Affiliations

Carlos Eduardo Leite Mello
1
ORCID: ORCID
Eduardo Lima do Carmo
1
ORCID: ORCID
Guilherme Braga Pereira Braz
1
ORCID: ORCID
Gustavo André Simon
1
ORCID: ORCID
João Vitor Alves de Sousa
1
Ana Carolina Pereira dos Reis
1
Marco Túlio Moura Leite
1
Gabriel Elias Soares de Araújo
1

  1. Agronomia, Universidade de Rio Verde, Rio Verde, Brazil
Download PDF Download RIS Download Bibtex

Abstract

Numerous plant species around the world suffer from the presence of viruses, which especially in economically important crops, cause irretrievable damage and/or extensive losses. Many biotechnological approaches have been developed, such as meristem culture, chemotherapy, thermotherapy or cryotherapy, to eliminate viruses from infected plants. These have been used alone or in combination. In this work, meristem culture, thermotherapy and cryotherapy were compared for Apple mosaic virus elimination from hazelnut local cultivar “Palaz”. The virus-free plant was also confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) after each treatment and, the best results were obtained by cryotherapy. A one step freezing technique, droplet vitrification, was used for cryotherapy, and the best regeneration percentage was 52%. After cryotherapy, virus-free seedlings of hazelnut local cultivar “Palaz” were confirmed as being virus-free after three subcultured periods.
Go to article

Bibliography

1. Akbas B., Degirmenci K. 2009. Incidence and natural spread of Apple mosaic virus on hazelnut in the west black sea coast of Turkey and its effect on yield. Journal of Plant Pathology 91 (3): 767–771. DOI: https://doi.org/10.4454/jpp.v91i3.577
2. Balamuralikrishnan M., Doraisamy S., Ganapathy T., Viswanathan R. 2002. Combined Effect of Chemotherapy and Meristem Culture on Sugarcane Mosaic Virus Elimination in Sugarcane. Sugar Tech 4 (2): 19–25. DOI: https://doi.org/10.1007/BF02956875
3. Bettoni J.C., Costa M.D., Gardin J.P.P., Kretzschmar A.A., Pathirana R. 2016. Cryotherapy: a new technique to obtain grapevine plants free of viruses. Revista Brasileira de Fruticultura 38: 2–13. DOI: https://doi.org/10.1590/0100-29452016833
4. Dĩaz-Barrita A.J., Norton M, Martĩnez-Peniche R.A., Uchanski M., Mulwa R., Skirvin R.M. 2008. The use of thermotherapy and in vitro meristem culture to produce virus-free ‘Chancellor’ grapevines. International Journal of Fruit Science 7 (3): 15–25. DOI: https://doi.org/10.1300/J492v07n03_03
5. Feng C., Wang R., Li J., Wang B., Yin Z., Cui Z., Li B., Bi W., Zhang Z., Li M., Wang Q. 2013. Production of pathogen-free horticultural crops by cryotherapy of in vitro-grown shoot tips. p. 463–482. In: "Protocols for Micropropagation of Selected Economically-Important Horticultural Plants" (M. Lambardi, E.A. Ozudogru, S.M. Jain, eds.). Methods in Molecular Biology, Clifton, New York, 490 pp. DOI: https://doi.org/10.1007/978-1-62703-074-8
6. Gergerich R.C., Dolja V.V. 2006. Introduction to plant viruses, the invisible foe. The Plant Health Instructor: 478. DOI: https://doi.org/10.1094/PHI-I-2006-0414-01
Helliot B., Panis B., Poumay Y., Swennen R., Lepoivre P., Frison E. 2002. Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana ( Musa spp.). Plant Cell Reports 20 (12): 1117–1122. DOI: https://doi.org/10.1007/s00299-002-0458-8
7. Hu G., Dong Y., Zhang Z., Fan X., Ren F., Zhou J. 2015. Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell, Tissue and Organ Culture 121 (2): 435–443. DOI: https://doi.org/10.1007/s11240-015-0714-6
8. Hu J.S., Li H.P., Barry K., Wang M. 1995. Comparison of dot blot, ELISA, and RT-PCR assays for detection of two Cucumber mosaic virus isolates infecting banana in Hawaii. Plant Disease 79 (9): 902–906. DOI: https://doi.org/10.1094/PD-79-0902
9. Kaya E. 2015. Using reverse transcription-polymerase chain reaction (RT-PCR) for determination of Apple mosaic ilarvirus (ApMV) in hazelnut ( Corylus avellana L.) cultivars. JSM Biochemistry and Molecular Biology 3 (1): 1011.
10. Kaya E., Alves A., Rodrigues L., Jenderek M., Hernandez-Ellis M., Ozudogru A., Ellis D. 2013. Cryopreservation of Eucalyptus Genetic Resources. CryoLetters 34 (6): 608–618.
11. Kaya E., Galatali S., Guldag S., Ozturk B. 2020. A new perspective on cryotherapy: pathogen elimination using plant shoot apical meristem via cryogenic techniques. p. 137–148. In: " Plant Stem Cells: Methods and Protocols" (M. Naseem, T. Dandekar, eds.). Springer, US, 150 pp. DOI: https://doi.org/10.1007/978-1-0716-0183-9
12. Kaya E., Souza F.V.D. 2017. Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane ( Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. In Vitro Cellular and Developmental Biology - Plant 53: 410–417. DOI: https://doi.org/10.1007/s11627-017-9837-2
13. Kobylko T., Nowak B., Urban A. 2005. Incidence of Apple mosaic virus (ApMV) on hazelnut in south-east Poland. Folia Horticulturae 17 (2): 153–161.
14. Kumar S., Khana M.S., Raja S.K., Sharmab A.K. 2009. Elimination of mixed infection of Cucumber mosaic and Tomato aspermy virus from Chrysanthemum morifolium Ramat. cv. Pooja by shoot meristem culture. Scientia Horticulturae 119 (2): 108–112. DOI: https://doi.org/10.1016/j.scienta.2008.07.017
15. Lambardi M., Sharma K.K., Thorpe T.A. 1993. Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine ( Pinus halepensis Mill.). In Vitro Cellular and Developmental Biology – Plant 29: 189–199. DOI: https://doi.org/10.1007/BF02632034
16. Lloyd G., McCown B. 1980. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot tip culture. International Plant Propagators' Society 30: 421–427.
17. López-Delgado H., Mora-Herrera M.E., Zavaleta-Mancera H.A., Cadena-Hinojosa M., Scott I.M. 2004. Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research 81 (3): 171–176. DOI: https://doi.org/10.1007/BF02871746
18. Marascuilo L.A., McSweeney M. 1977. Post-hoc multiple comparisons in sample preparations for test of homogeneity. p. 141–147. In: “Non-Parametric and Distribution-Free Methods for the Social Sciences” (M. McSweeney, L.A. Marascuilo, eds.). Pacific Grove, CA, USA: Brooks/Cole Publications.
19. Menzel N., Jelkmann N., Maiss E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant m-RNA as internal control. Journal of Virological Methods 99: 89–92. DOI: https://doi.org/10.1016/S0166-0934(01)00381-0
20. Milosevic S., Cingel A., Jevremovic S.B., Stankovic I., Bulajic A., Branka K., Subotic A. 2012. Virus elimination from ornamental plants using in vitro culture techniques. Journal Pesticides and Phytomedicine – Pesting 27 (3): 203–211. DOI: https://doi.org/10.2298/PIF1203203M
21. Nukari A., Uosukainen M., Rokka V.M. 2009. Cryopreservation techniques and their application in vegetatively propagated crop plants in Finland. Agricultural and Food Science 18: 117–128. DOI: https://doi.org/10.2137/145960609789267506
22. O’Donnell K. 1999. Plant pathogen diagnostics: present status and future developments. Potato Research 42: 437–447. DOI: https://doi.org/10.1007/BF02358160
23. Ozudogru E.A., Kaya E., Kirdok E., Issever-Ozturk S. 2011. In vitro propagation from young and mature explants of thyme ( Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cellular & Developmental Biology – Plant 47: 309–320. DOI: https://doi.org/10.1007/s11627-011-9347-6
24. Paprstein F., Sedlak J., Polak J., Svobodova L., Hassan M., Bryxiova M. 2008. Results of in vitro thermotherapy of apple cultivars. Plant Cell Tissue and Organ Culture 94 (3): 347–352. DOI: https://doi.org/10.1007/s11240-008-9342-8
25. Paprstein F., Sedlak J., Svobodova L., Polak J., Gadiou S. 2013. Results of in vitro chemotherapy of apple cv. Fragrance. Horticultural Science 40: 186–190. DOI: https://doi.org/10.17221/37/2013-HORTSCI
26. Ramgareeb S., Snyman S.J., van Antwerpen T., Rutherford R.S. 2010. Elimination of virus and rapid propagation of disease-free sugarcane ( Saccharum spp. cultivar NCo376) using apical meristem culture. Plant Cell Tissue and Organ Culture 100: 175–181. DOI: https://doi.org/10.1007/s11240-009-9634-7
27. Rout G.R., Mohanpatra A., Jain M.S. 2006. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnology Advances 24 (6): 531–560. DOI: https://doi.org/10.1016/j.biotechadv.2006.05.001
28. Sakai A., Kobayashi S., Oiyama I. 1990. Cryopreservation of nucellar cells of navel orange ( Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports 9: 30–33. DOI: https://doi.org/10.1007/BF00232130
29. Sellner L.N., Coelen R.J., Mackenzie J.S. 1992. A one-tube, one manipulation RT-PCR reaction for detection of Ross river virus. ‎ Journal of Virological Methods 40 (3): 255–263. DOI: https://doi.org/10.1016/0166-0934(92)90084-Q
30. Slack S.A., Tufford L.A. 1995. Meristem culture for virus elimination. p. 117–128. In: "Plant Cell, Tissue and Organ Culture, Fundamental Methods" (O.L. Gamborg, G.C. Phillips, eds.), Springer-Verlag Berlin Heidelberg, 349 pp. DOI: https://doi.org/10.1007/978-3-642-79048-5
31. Spiegel S., Frison E.A., Converse R.H. 1993. Recent development in therapy and virus-detection procedures for international movements of clonal plant germplasm. Plant Disease 77: 176–1180. DOI: https://doi.org/10.1094/PD-77-1176
32. Spiegel S., Scott W., Bowman-Vance V., Tam Y., Galiakparov N.N., Rosner A. 1996. Improved detection of prunus necrotic ringspot virus by the polymerase chain reaction. European Journal of Plant Pathology 102 (7): 681–685. DOI: https://doi.org/10.1007/BF01877249
33. Tan R., Wang L., Hong N., Wang G. 2010. Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell Tissue and Organ Culture 101: 229–235. DOI: https://doi.org/10.1007/s11240-010-9681-0
34. Ustaoglu B., Karaca M. 2010. The possible effects of temperature conditions on hazelnut farming in Turkey. Itudergisi 9 (3): 153–161.
35. Valasevich N., Cieślińska M., Kolbanova E. 2014. Molecular characterization of Apple mosaic virus isolates from apple and rose. European Journal of Plant Pathology 141: 839–845. DOI: https://doi.org/10.1007/s10658-014-0580-9
36. Vivek M., Modgil M. 2018. Elimination of viruses through thermotherapy and meristem culture in apple cultivar ‘Oregon Spur-II’. Virus Disease 29 (1): 75–82. DOI: https://doi.org/10.1007/s13337-018-0437-5
37. Wang Q.C., Cuellar W.J., Rajamäki M.L., Hiraka Y., Valkonen J.P.T. 2008. Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology 9: 237–250. DOI: https://doi.org/10.1111/j.1364-3703.2007.00456.x
38. Wang Q., Liu Y., Xie Y., You M. 2006. Cryotherapy of Potato Shoot Tips for Efficient Elimination of Potato Leafroll Virus (PLRV) and Potato Virus Y (PVY). Potato Research 49: 119–129. DOI: https://doi.org/10.1007/s11540-006-9011-4
39. Wang Q., Panis B., Engelmann F., Lambardi M., Valkonen J.P.T. 2009. Cryotherapy of shoot tips: a technique for pathogen elimination to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Annals of Applied Biology 154: 351–363. DOI: https://doi.org/10.1111/j.1744-7348.2008.00308.x
40. Wang Q.C., Valkonen J.P.T. 2008a. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. Journal of Virological Methods 154: 135–145. DOI: https://doi.org/10.1016/j.jviromet.2008.08.006
41. Wang Q.C., Valkonen J.P.T. 2008b. Efficient elimination of Sweetpotato little leaf phytoplasma fromsweetpotato by cryotherapy of shoot tips. Plant Pathology 57: 338–347. DOI: https://doi.org/10.1111/j.1365-3059.2007.01710.x
42. Wang Q.C., Valkonen J.P.T. 2009. Cryotherapy of shoot tips: novel pathogen eradication method. Trends in Plant Science 14: 119–122. DOI: https://doi.org/10.1016/j.tplants.2008.11.010
43. Wang B., Wang R.R., Cui Z.H., Bi W.L., Li J.W., Li B.Q., Ozudogru E.A., Volk G.M., Wang Q.C. 2014. Potencial applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnology Advances 32: 583–595. DOI: https://doi.org/10.1016/j.biotechadv.2014.03.003
44. Ward E., Foster S.J., Fraaije B.A. McCartney H.A. 2004. Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Annals of Applied Biology 145: 1–16. DOI: https://doi.org/10.1111/j.1744-7348.2004.tb00354.x
Go to article

Authors and Affiliations

Ergun Kaya
1

  1. Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey
Download PDF Download RIS Download Bibtex

Abstract

It is challenging to obtain proper leaf wetting. An angled spray could overcome this impediment, but which spray angle is best suited to droplet size is still unknown. In an outdoor pot experiment, seven doses of cycloxydim and sethoxydim were sprayed with single-orifice standard, anti-drift, and air induction (having a fine, medium, and extremely coarse spray quality, respectively) flat fan nozzles, using spray angles of 10°, 20° backward, 0° (vertical), 10°, 20°, 30°, 40°, 50°, and 60° forward relative to the direction of nozzle trajectory on wild barley at the three-leaf stage. Generally, the forward angled spray was better than the backward angled spray. With a standard flat fan nozzle, the forward angling of spray from 0° to 20° reduced the ED50 from 60.24 to 39.85 g a.i. ⋅ ha−1 for cycloxydim and from 150.51 to 81.13 g a.i. ⋅ ha−1 for sethoxydim. With an anti-drift flat fan nozzle, the forward angling of spray from 0° to 30° reduced the ED50 from 72.57 to 50.20 g a.i. ⋅ ha−1 for cycloxydim and from 181.94 to 104.51 g a.i. ⋅ ha−1 for sethoxydim. With an air induction flat fan nozzle, the forward angling of spray from 0° to 40° reduced the ED50 from 102.96 to 45.52 g a.i. ⋅ ha−1 for cycloxydim and from 209.91 to 92.80 g a.i. ⋅ ha−1 for sethoxydim. More angling did not improve the efficacy of these herbicides. Our results revealed that larger spray droplets needed more spray angle than smaller spray droplets to achieve an equal control.

Go to article

Authors and Affiliations

Akbar Aliverdi
ORCID: ORCID
Mojtaba Zarei
Download PDF Download RIS Download Bibtex

Abstract

An efficient application of phytosanitary products depends, among other factors, on a good selection of nozzles and the application volume rate of the solution used. Thus, the objective of this work was to evaluate the efficiency of different models of hydraulic tips and application volume rates on spray coverage on targets positioned in the upper, middle and lower thirds of corn plants. The application volume rates evaluated were: 50 l · ha −1; 100 l · ha −1; 150 l · ha −1; 200 l · ha −1; 300 l · ha −1 and 400 l · ha −1. The following nozzles were used: TT 11001, TTJ60 11002, TXA 8003, 30HCX 12, GRD120 02 and GAT11002. Applications were carried out in phenological stages V6–V7 of corn plants. There was a directly proportional relationship between an increase in application volume rate and the levels of spray coverage and droplet density in the three thirds of corn plants. The application volume rate evaluated, except for 50 l · ha −1 in the lower third, provided a number of droplets compatible with the literature recommendations for the application of systemic fungicides. All tips evaluated provided a number of droplets compatible with the recommendations in the literature for the application of systemic fungicides, therefore, they can be recommended for use in spraying on corn crops.
Go to article

Authors and Affiliations

Roxana Stefane Mendes Nascimento
1
ORCID: ORCID
Douglas Ferreira Parreira
2
Juliana Souza Milagres
3
Danilo Felipe Afonso
3
Pedro Luid de Sousa Oliveira
4
Rafael Guimarães Silva Moraes
4

  1. Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
  2. Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil
  3. Agronomia, Universidade Federal de Viçosa, Viçosa, Brazil
  4. Agronomia, Universidade Estadual da Região Tocantina do Maranhão, Imperatriz, Brazil
Download PDF Download RIS Download Bibtex

Abstract

The electrostatic impulse method is an established method for producing microbeads or capsules. Such particles have found application in biomedical engineering and biotechnology. The geometric properties of the droplets – constituting precursors of microbeads and capsules – can be precisely controlled by adjusting the geometry of the nozzle system, the physical properties and the flow rate of the fluids involved, as well as the parameters of the electrostatic impulse. In this work, a method of mathematical modeling of the droplet generation process using the electrostatic impulse method in a single nozzle system is presented. The developed mathematical model is an extension of the standard Volume of Fluid (VOF) model by addition of the effect of the electric field on the fluid flow. The model was implemented into the OpenFOAM toolkit for computational fluid dynamics (CFD). The performed CFD simulation results showed good agreement with experimental data. As a result, the influence of all process parameters on the droplet generation process was studied. The most significant change in droplet generation was caused by changing the electrostatic impulse strength. The presented modeling method can be used for optimization of process design and for studying the mechanisms of droplet generation. It can be extended to describe multi nozzle systems used for one-step microcapsule production.
Go to article

Authors and Affiliations

Piotr Cendrowski
1
ORCID: ORCID
Katarzyna Kramek-Romanowska
1
ORCID: ORCID
Dorota Lewińska
2
ORCID: ORCID
Marcin Grzeczkowicz
2
ORCID: ORCID
Paulina Korycka
3
ORCID: ORCID
Jan Krzysztoforski
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Ludwika Warynskiego 1, Warsaw, Poland
  2. Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, ul. Ks. Trojdena 4, Warsaw, Poland
  3. Foundation of Research and Science Development, Rydygiera 8, 01-793 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Nozzle type and herbicide application timing can affect herbicide efficacy. Prickly sida ( Sida spinosa) and barnyardgrass ( Echinochloa crus-galli) are problematic weeds in eastern Mississippi cotton production and have reduced yield in recent years. Field studies were conducted at two locations – Brooksville, MS (2018, 2019) and Starkville, MS (2019) to understand the nozzle type and herbicide application timing effects on prickly sida and barnyardgrass control in cotton. Studies also compared applications made by an eight-nozzle tractor-mounted sprayer with a four-nozzle backpack sprayer. Herbicide applications were made at four timings: preemergence (PRE), early-postemergence (EPOST), mid-postemergence (MPOST), and late-postemergence (LPOST) corresponding to the preemergence (immediately after planting), two-to-three leaf, four-to-six leaf, and early-bloom stages, respectively. Treatments were made at 140 l · ha−1 applied at each growth stage, with nozzle type and sprayer as variables by each timing. Results showed no differences in treatments applied with backpack and tractor-mounted sprayers. Control of barnyardgrass was significantly affected by nozzle type, but control of prickly sida was not significantly influenced by nozzle type. In all three site-years, plots receiving a MPOST only herbicide application resulted in less weed control than areas receiving a two-pass POST herbicide program. Cotton yield was significantly affected by the herbicide program at one site-year, but was not significantly affected by the herbicide program except where cotton injury exceeded 15%. A two- or three-pass herbicide program was most effective in controlling prickly sida and barnyardgrass in Mississippi cotton.
Go to article

Authors and Affiliations

J. Connor Ferguson
1 2
ORCID: ORCID
Justin S. Calhoun
3 2
Kayla L. Broster
2
Luke H. Merritt
4 2
Zachary R. Treadway
5 2
Michael T. Wesley Jr.
6 2
Nicholas Fleitz
7

  1. Weed Science and Technical Agronomy, Sesaco Corporation, Yukon, Oklahoma, United States
  2. Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, United States
  3. Plant Science and Technology, University of Missouri, Portageville, Missouri, United States
  4. Orr Agricultural Research & Demonstration Center, University of Illinois, Baylis, Illions, United States
  5. Plant and Soil Sciences, Oklahoma State University, Ardmore, Oklahoma, United States
  6. Agronomy, Bayer Crop Science, Jerseyville, Illions, United States
  7. Application Agronomist, Pentair-Hypro, New Brighton, Minnesota, United States

This page uses 'cookies'. Learn more