Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

DP600 steels are characterized by a dual phase ferritic-martensitic microstructure, to which they owe their exceptionally favourable combination of high strength and good ductility. One of the production methods for this grade of steel is the hot rolling process. Despite the fact that these steels have been produced on an industrial scale for almost 40 years, they are still being studied intensively, with new research on the formation of their microstructure and properties published every year. This article focuses on the characteristics of DP600 steel produced on a hot rolling mill for applications in automotive industry. The article presents the results of mechanical properties tests and microstructure analysis of DP600 steel obtained in an industrial hot rolling process. The general characteristic of DP600 steel presented in this article, is supplemented with statistical analysis of correlations between chemical composition, selected process parameters and mechanical properties of hot rolled DP600 steel.
Go to article

Authors and Affiliations

Tomasz Kaźmierski
1
ORCID: ORCID
Janusz Krawczyk
2
ORCID: ORCID
Łukasz Frocisz
2
ORCID: ORCID

  1. ArcelorMitt al Poland S.A. Unit in Krakow, Tadeusza Sendzimira 1 Street, 31-752 Krakow, Poland; AGH Doctoral School al. Mickiewicza 30, 30-059 Krakow, Poland
  2. AGH University of Krakow, Faculty of Metals Engineering and Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

An artificial neural network (ANN) model was developed to predict the tensile properties of dual-phase steels in terms of alloying elements and microstructural factors. The developed ANN model was confirmed to be more reasonable than the multiple linear regression model to predict the tensile properties. In addition, the 3D contour maps and an average index of the relative importance calculated by the developed ANN model, demonstrated the importance of controlling microstructural factors to achieve the required tensile properties of the dual-phase steels. The ANN model is expected to be useful in understanding the complex relationship between alloying elements, microstructural factors, and tensile properties in dual-phase steels.
Go to article

Bibliography

[1] H.L. Kim, S.H. Bang, J.M. Choi, N.H. Tak, S.W. Lee, S.H. Park, Met. Mater. Int. 26, 1757-1765 (2020).
[2] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A 758, 56-59 (2019).
[3] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A 742, 334-343 (2019).
[4] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
[5] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A 711, 22-28 (2018).
[6] W . Bleck, S. Papaefthymiou, A. Frehn, Steel Res. Int. 75, 704-710 (2004).
[7] M .J Jang, H. Kwak, Y.W Lee, Y.J. Jeong, J. Choi, Y.H. Jo, W.M. Choi, H.J. Sung, E.Y. Yoon, S. Praveen, S. Lee, B.J. Lee, M.I. Abd El Aal, H.S. Kim, Met. Mater. Int. 25, 277-284 (2019).
[8] N. Saeidi, M. Jafari, J.G. Kim, F. Ashrafizadeh, H.S. Kim, Met. Mater. Int. 26, 168-178 (2020).
[9] M . Soleimani, H. Mirzadeh, C. Dehghanian, Met. Mater. Int. 26, 882-890 (2020).
[10] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, Annual Rev. Mater. Res. 45, 391-431 (2015).
[11] D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957-2965 (2009).
[12] D.K. Mondal, R.M. Dey, Mater. Sci. Eng. A 149, 173-181 (1992).
[13] M . Sarwar, R. Priestner, J. Mater. Sci. 31, 2091-2095 (1996).
[14] B. Hwang, T. Cao, S.Y. Shin, S. Lee, S.J. Kim, Mater. Sci. Tech. 21, 967-975 (2005).
[15] F. Najafkhani, H. Mirzadeh, M. Zamani, Met. Mater. Int. 25, 1039-1046 (2019).
[16] J.I. Yoon, J. Jung, H.H. Lee, J.Y. Kim, H.S. Kim, Met. Mater. Int. 25, 1161-1169 (2019).
[17] H. Duan, Y. Li, G. He, J. Zhang, Int. J. Mod. Phys. B 23, 1191- 1196 (2009).
[18] S. Krajewski, J. Nowacki, Arch. Civ. Mech. Eng. 14, 278-286 (2014).
[19] N.S. Reddy, C.H. Park, Y.H. Lee, C.S. Lee, Mater. Sci. Tech. 24, 294-301 (2008).
[20] N.S. Reddy, Y.H. Lee, C.H. Park, C.S. Lee, Mater. Sci. Eng. A 492, 276-282 (2008).
[21] N.S. Reddy, B.B. Panigrahi, M.H. Choi, J.H. Kim, C.S. Lee, Comput. Mater. Sci. 107, 175-183 (2015).
[22] N.S. Reddy, J. Krishnaiah, S.G. Hong, J.S. Lee, Mater. Sci. Eng. A 508, 93-105 (2009).
[23] T. Dutta, S. Dey, S. Datta, D. Das, Comput. Mater. Sci. 157, 6-16 (2019).
[24] C. Lin, P.L. Nrayana, N.S. Reddy, S.W. Choi, J.T. Yeom, J.K Hong, C.H. Park, J. Mater. Sci. Tech. 35, 907-916 (2019).
[25] I .D. Jung, D.S. Shin, D. Kim, J. Lee, M.S. Lee, H.J. Son, N.S. Reddy, M. Kim, S.K. Moon, K.T. Kim, J. Yu, S. Kim, S.J. Park, H. Sung, Materialia 11, 100699 (2020).
[26] H.S. Lim, J.Y. Kim, B. Hwang, J. Korean. Soc. Heat Treat. 30, 106-112 (2017).
[27] S. Sodjit, V. Uthaisangsuk, Mater. Des. 41, 370-379 (2012).
[28] Z. Jiang, Z. Guan, J. Lian, Mater. Sci. Eng. A 190, 55-64 (1995).
[29] P . Chang, A.G. Preban, Acta Metall. 33, 897-903 (1985).
[30] N.D. Beynon, S. Oliver, T.B. Jones, G. Fourlaris, Mater. Sci. Tech, 21, 771-778 (2005).
Go to article

Authors and Affiliations

Seung-Hyeok Shin
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, an electrochemical method was used to permeate hydrogen through annealed DP590 steel under various pre-strain conditions (0-15%). Stress-strain and internal friction-temperature curves of the dual phase (DP) steel were obtained from slow strain-rate tensile tests and internal friction measurements, respectively. The diffusion of interstitial atoms, formation of Cottrell atmospheres, and embrittlement mechanism of DP steel were investigated under different prestress conditions before and after hydrogen permeation. The results show that the tensile strength of DP steel first decreases and then increases and the elongation sharply decreases with increasing pre-strain. The strength and ductility present similar trends with changes in pre-strain before and after hydrogen charging, however, after hydrogen charging, an obvious increase in tensile strength and decrease in elongation are observed. Furthermore, the γ peak amplitude decreases and the Snoek-Ke-Koster (SKK) peak amplitude increases with increasing internal pre-strain according to the friction-temperature curve. The γ peak and SKK peak exhibit the same trends with increasing pre-strain before and after hydrogen charging and both the γ peak and SKK peak decrease with hydrogen charging. The dislocation density in DP steel increases after hydrogen charging.
Go to article

Authors and Affiliations

Qihang Pang
1 2
ORCID: ORCID
Cong Geng
1 2
ORCID: ORCID
Jiaji Wang
2
ORCID: ORCID
Weijuan Li
1 2
ORCID: ORCID
Jing Guo
1 2
ORCID: ORCID
Xiaoming Yu
3
ORCID: ORCID

  1. University of Science and Technology LIAONING, School of Materials and Metallurgy, ANSHAN LIAONING, 114051, China
  2. State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan Liaoning, 114009, China
  3. Shenyang Ligong University, School of Material Science and Engineering, Shenyang Liaoning, 110159, China

This page uses 'cookies'. Learn more