Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Steel Mesh-Reinforced Cementitious Composites (SMRCC) (traditionally known as ferrocement) have been in existence for few decades, but have some limitations set on element thickness and number of reinforcing mesh layers and the resulting deflection ductility. Therefore, the author has made an attempt to explore whether deflection ductility will improve in mesh-reinforced cementitious composites (25 mm thick) if discontinuous fibres are added to slab elements. For this purpose, thin slab elements of dimensions 700 mm (length) × 200 mm (width) × 25 mm (thickness) were cast and subjected to four point bending tests. Based on the flexural tests conducted on SMRCC (Control Slab Elements, cast with Steel Mesh Volume of reinforcement, MVr = 0.78, 0.94, and 1.23%) and Hybrid Mesh-and-Fibre-Reinforced Cement Based Composite (HMFRCBC) (Test Slab Elements, combining MVr = 0.78, 0.94 and 1.23% and Polyolefin Fibre Volume fraction, PO-FVf = 0.5‒2.5% of volume of specimens, with 0.5% interval), load-deflection and the deflection ductility index were analyzed. From the flexural load-deflection curves it has been observed that HMFRCBC slabs demonstrate higher flexural load-carrying capacity and deflection ductility when compared to SMRCC slabs. This study shows that higher the polyolefin fibre volume fraction (PO-FVf) from 0.5 to 2.5% (with a 0.5% interval) in HMFRCBC slabs, the higher the flexural deflection ductility. The Deflection Ductility Index (DDI) of HMFRCBC (with 5 layers of mesh and PO-FVf = 2.5%) is 4.5 times that of SMRCC. This study recommends that HMFRCBC can be used as an innovative construction material due to its higher flexural ductility characteristics.

Go to article

Authors and Affiliations

P.B. Sakthivel
Download PDF Download RIS Download Bibtex

Abstract

Nil strength temperature of 1062°C and nil ductility temperature of 1040°C were experimentally set for CuFe2 alloy. The highest formability at approx. 1020°C is unusable due to massive grain coarsening. The local minimum of ductility around the temperature 910°C is probably due to minor formation of γ-iron. In the forming temperatures interval 650-950°C and strain rate 0.1-10 s–1 the flow stress curves were obtained and after their analysis hot deformation activation energy of 380 kJ·mol–1 was achieved. Peak stress and corresponding peak strain values were mathematically described with good accuracy by equations depending on Zener-Hollomon parameter.

Go to article

Authors and Affiliations

I. Schindler
M. Sauer
P. Kawulok
K. Rodak
E. Hadasik
M.B. Jabłońska
S. Rusz
V. Ševčák
Download PDF Download RIS Download Bibtex

Abstract

The influence of the hold time of the austempering heat treatment at 280°C on the microstructure and corrosion resistance in NaCl-based media of austempered ductile iron was investigated using X-ray diffraction, micro-hardness measurements, corrosion tests and surface observations. Martensite was only found in the sample which was heat treated for a short period (10 minutes). Corrosion tests revealed that this phase does not play any role in the anodic processes. Numerous small pits were observed in the α-phase which is the precursor sites in all samples (whatever the value of the hold time of the austempering heat treatment).

Go to article

Authors and Affiliations

H. Krawiec
V. Vignal
J. Lelito
A. Krystianiak
E. Tyrała
Download PDF Download RIS Download Bibtex

Abstract

In the present work, different Cu-alloyed model ductile irons with ferritic (0%Cu-0.09%Mn), mixed ferritic-pearlitic (0.38%Cu-0.40%Mn) and pearlitic (0.69%Cu-0.63%Mn) microstructure were produced and analyzed in terms of their electrochemical corrosion behavior in a 3.5wt.%NaCl aqueous solution containing naturally dissolved oxygen at room temperature (25°C). The remaining elements such as Si and Mg were kept at balanced levels in an attempt to minimize variations in graphite size and distribution among different samples. The corrosion resistance was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization. Microstructure analysis of the cast alloys confirmed similarity in the graphite morphology among the different cast samples and the expected variations in the metallic matrix. In the absence of passivation, it was found that the addition of copper led to an increase in corrosion resistance, which could be attested by higher values polarization resistance and corrosion potential.

Go to article

Authors and Affiliations

P. Brito
W. Pereira
W. Santos
H. Gomes
Download PDF Download RIS Download Bibtex

Abstract

The study presented in this paper concerned the possibility to apply a heat treatment process to ductile cast-iron thin-walled castings in order to remove excessive quantities of pearlite and eutectic cementite precipitates and thus meet the customer’s requirements. After determining the rates of heating a casting up to and cooling down from 900°C feasible in the used production heat treatment furnace (vh = 300°C/h and vc = 200°C/h, respectively), dilatometric tests were carried out to evaluate temperatures Tgr, TAc1start, TAc1end, TAr1start, and TAr1end. The newly acquired knowledge was the base on which conditions for a single-step ferritizing heat treatment securing disintegration of pearlite were developed as well as those of a two-step ferritization process guaranteeing complete disintegration of cementite and arriving at the required ferrite and pearlite content. A purely ferritic matrix and hardness of 119 HB was secured by the treatment scheme: 920°C for 2 hours / vc = 60°C/h / 720°C for 4 hours. A matrix containing 20–45% of pearlite and hardness of 180–182 HB was obtained by applying: 920°C for 2 hours or 4 hours / vc = 200°C/h to 650°C / ambient air.

Go to article

Authors and Affiliations

Marek Mróz
ORCID: ORCID
A.W. Orłowicz
ORCID: ORCID
M. Tupaj
ORCID: ORCID
B. Kupiec
M. Kawiński
Download PDF Download RIS Download Bibtex

Abstract

The article presents research on solid particle erosive wear resistance of ductile cast iron after laser surface melting. This surface treatment technology enables improvement of wear resistance of ductile cast iron surface. For the test ductile cast iron EN GJS-350-22 surface was processed by high power diode laser HPDL Rofin Sinar DL020. For the research single pass and multi pass laser melted surface layers were made. The macrostructure and microstructure of multi pass surface layers were analysed. The Vickers microhardness tests were proceeded for single pass and multi pass surface layers. The solid particle erosive test according to standard ASTM G76 – 04 with 30°, 60° and 90° impact angle was made for each multi pass surface layer. As a reference material in erosive test, base material EN GJS-350-22 was used. After the erosive test, worn surfaces observations were carried out on the Scanning Electron Microscope. Laser surface melting process of tested ductile cast iron resulted in maximum 3.7 times hardness increase caused by microstructure change. This caused the increase of erosive resistance in comparison to the base material.

Go to article

Authors and Affiliations

A. Kotarska
D. Janicki
J. Górka
ORCID: ORCID
T. Poloczek
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the issue of using moulding sands with a new two-component binder: furfuryl-resole resin – PCL polycaprolactone for the production of ductile iron heavy castings. The previous laboratory studies showed the possibility of using biodegradable materials as binders or parts of binders’ compositions for foundry moulding and core sands. The research proved that addition of new biodegradable PCL in the amount of 5% to the furfuryl-resole resin does not cause significant changes in moulding sand’s properties. The article presents research related to the production of ductile iron castings with the use of moulds with a modified composition, i.e. sands with furfuryl resole resin with and without PCL. Mechanical properties and microstructure of the casting surface layer at the metal/ mould interface are presented. The obtained test results indicate that the use of a biodegradable additive for making foundry moulds from moulding sand with a two-component binder does not deteriorate the properties of ductile iron castings.
Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Warmuzek
1
ORCID: ORCID
M. Brůna
3
ORCID: ORCID

  1. Lukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  3. University of Žilina, Department of Technological Engineering, Faculty of Mechanical Engineering, Univerzitná 1, 010 26, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The research article address, the mechanical properties such as fatigue, impact strength and tribological properties of Austempered ductile iron (ADI) has been investigated. The samples of ADI iron were austenitized at 927°C for 2 hrs and later it was under austempering process for 2 hrs at a temperature range of 240°C to 400°C. Experiments under axial loading has been carried out on three different compositions (without Ni(X), 0.22 wt % Ni (X1), 0.34 wt. % Ni (X2). Fabricated test bars were converted in to as per ASTM standard samples for different tests. In order to study the influence of chunky nickel morphology studies on fatigue life and impact strength were carried out on a second set of specimens without any microstructural defect. Metallurgical analyses were performed on all the samples of heat treated samples (AF – Ausferrite, MB – Mixed bainite, M – Martensite, RA – Retained Austenite and N-Nodule) were found and compared. It was found that a mean content of 22% of chunky nickel in the microstructure (with respect to total Ni content) influence considerably the fatigue and impact strength properties of the cast iron. Moreover tribological properties of the specimens were also studied under dry sliding conditions at various sliding speed and load. The wear resistance and coefficient of friction were found to increase with increase in load and sliding speed.

Go to article

Authors and Affiliations

T. Ramkumar
S. Madhusudhanan
I. Rajendran
Download PDF Download RIS Download Bibtex

Abstract

Quantitative evaluation of the microstructure obtained in a product is nowadays commonly required both in R&D activities and during routine quality control of materials and components.
This paper presents an assessment of the quality of ductile cast iron, based on investigations of the effect of chemical composition on the distribution of ductile graphite precipitates in low-alloy cast iron EN-GJS-500-7. The size of graphite precipitates was expressed in terms of equivalent cross-sectional diameter, which made it possible to describe the distribution of graphite precipitates with a function simulating the log-normal distribution of graphite. The resulting U, W and Z parameters were statistically analysed, including the effect of chemical composition on graphite distribution. In the studied cast iron, the components that increase the U parameter are silicon, manganese and phosphorus, thus favourably affecting the total graphite number. In contrast, the constituents that decrease the U parameter are carbon, chromium and aluminium.
Go to article

Bibliography

[1] Cybo, J., Jura, S. (1995). Functional description of isometric structures in quantitative metallography. Gliwice: Silesian University of Technology Publishing House. (in Polish)
[2] Alp, T., Wazzan, A.A. & Yilmaz, F. (2005), Microstructure-property relationships in cast irons. The Arabian Journal for Science and Engineering. 30(2B), 163-175.
[3] Podrzucki, C. (1999). Publishing House. Cracow: STOP. (in Polish).
[4] Angus, H.T. (1978). Cast Iron: Physical and Engineering Properties. London-Boston: Edit Butterworth a. Co.
[5] Jura, S. & Jura, Z. (2001). The influence of the chemical composition and degree of spheroidization of graphite on the mechanical properties mechanical properties of cast iron. Archives of Foundry. 1(1), (2/2), 1-8. ISSN 1642-5308
[6] Ripplinger, C., Gastens, M., Zimmermann, J., Bjӧrn, P., Broeckmann, C., Schrӧder, K-U. & Bührig-Polaczek, A. (2021). Potential of metallurgical gradients in the design of components structural components made of ductile iron. Materials, 14(9), 2411. DOI: 10.3390/ma14092411
[7] Menk, W., Tunzini, S., Rieck, T., Honsel, C. & Weiss, K. (2010). Material development of ductile iron, simulation and production technology for local reinforcement of castings. Key Engineering Materials. 457, 343-348. https://doi.org/10.4028/www.scientific.net/KEM.457.343
[8] Stefanescu, D.M. & Suárez, R. (2020). 90 years of thermal analysis as a control tool in the melting of cast iron. China Foundy. 17(2), 69-84. https://doi.org/10.1007/s41230-020-0039-x
[9] Friess, J., Bührig-Polaczek, A., Sonntag, U. & Steller, I. (2020). From individual graphite assignment to an improved digital image analysis of ductle iron. International Journal of Metalcasting. 14, 1090-1104. https://doi.org/10.1007/s40962-020-00416-3
[10] Bartocha, D. (2006). The structure of EN-GJS-500-7 cast iron depending on the feedstock materials. Archives of Foundry. 6(22), 27-32. ISSN 1642-5308
[11] Materials of Śrem Cast Iron Foundry based in Śrem. Retrieved September 12, 2021, from http://www.proservicetech.it/itacax-thermal-analysis-final-iron-quality-control/
Go to article

Authors and Affiliations

H. Pacha-Gołębiowska
1
ORCID: ORCID

  1. Akademia Nauk Stosowanych im. Jana Amosa Komeńskiego w Lesznie, ul. Mickiewicza 5, 64-100 Leszno, Poland
Download PDF Download RIS Download Bibtex

Abstract

In many application fields, thin-walled ductile iron castings can compete with castings made from aluminium alloys thanks as their show superior mechanical properties higher stiffness, vibrations damping as well as properties at higher temperatures. As problematic criterion in thin-walled cast-iron castings can be seen the graphitization ability and high sensitivity of the structure and the mechanical properties to the solidification rate.
The tests were curried on plate castings with wall thicknesses of 3, 5, and 8 mm, using inoculants based on FeSi70 with different contents of nucleation-active elements as aluminium, calcium, zirconium and magnesium. The inoculation was made by the in-mould method. In the experiments structures were achieved, differing by the graphite dispersity, structure and mechanical properties. The experiments have proved particularly a high sensitivity of the structure and the mechanical properties to the cooling rate of the sample castings. The influence of the inoculant type is less important than the influence of solidification rate.
Go to article

Bibliography

[1] Caldera, M., Chapetti, M., Massone, J.M. & Sikora J.A. (2007). Influence of nodule count on fatique properties of ferritic thin wall ductile iron. Materials Science and Engineering. 23(8), 1000-1004. DOI: 10.1179/174328407X185910
[2] Stefanescu, D.M., Dix, :.P., Ruxanda, R.E., Corbitt-Coburn, C. & Piwonka, T.S. (2002). Tensile properties of thin wall ductile iron. AFS Transactions. 02-178, 1149-1162 Schaumburg USA: AFS Society.
[3] Soedarsono, J.W., Suharno, B. & Sulamet-Ariobimo, R.D. (2011). Effect of casting design to microstructure and mechanical properties of 3 mm TWDI plate. Advance Material Researchs. 415-417, 831-837. https://doi.org/10.4028/www.scientific.net/AMR.415-417.831
[4] Labresque, C. (2003). Production and properties of thin-wall ductile iron castings. International Journal of Cast Metals Research. 16(1-3), 313- 317. https://doi.org/10.1080/13640461.2003.11819601
[5] Sulamet-Ariobimo, R.D., Soedersono, J.W. & Soemardi,T.P. (2017). Thin wall ductile iro and n castings. IntechOpen 72117. Advanced Casting Technologies. DOI: 10.5772/intechopen.72117
[6] Vijayan, S., Wilson, P. & Prabhakaran, K. (2017). Ultra low-density mullite foams by reaction sintering of thermo-foamed alumina-silica powder dispersion in molten sucrose. Journal of the European Ceramic Society. 37(4), 1657-1664. https://doi.org/10.1016/j.jeurceramsoc.2016.11.025
[7] Stefanescu, D.M., Alonso, G. & Suarez, R. (2020). Recent devepments in understanding nucleation and crystallization of spheroidal grapfite in iron- carbon-silicon alloys. Metals. 1092), 221, 1-39. DOI: 10.3390/met10020221.
[8] Alonso, G., Larrañaga, P., Stefanescu, D.M., De la Fuente, E., Natxiondo, A. & Suarez, R. (2017). Kinetics of nucleation and growth of graphite at different stages of solidification for spheroidal graphite iron. International Journal of Metalcasting. 11(1), 14- 26. DOI: 10.1007/s40962-016-0094-7
[9] Alonso, G., Stefanescu, D.M., Fuente, E., Larrana, P. & Suarez, R. (2018). The influence of trace elements on the nature of the nuclei of graphite ductile iron. Materials Science Forum. 925,78-85. ISSN 1662-9752
[10] Skaland, T. (2005). Nucleation mechanisms in ductile iron. Proceedings of AFS Cast Iron Inoculation Conference. 29-30 September 2005. Schaumburg. USA (pp. 13-30).
[11] Skaland, T., Grong, O. & Grong, T. (1993). A model for the graphite formation in ductile cast iron. Metal Transaction. 24A, 2321-2345.
[12] Lekakh, S. (2014). Analysis of heterogeneous nucleation in ductile iron. Shape casting. 5th International Symposium. Materials Science, January. 121-128. DOI: 10.1007/978-3-319-48130-2_15
[13] Alonso, G., Stefanescu, D.M., Suarez. R. (2020). Effect of antimony on nucleation process of spheroidal graphite iron. AFS Proceedings of the 124th Metalcasting congress. Paper 2020-04.
[14] Stefanescu, D.M. (2016). On the crystalization of graphite from liquid iron-carbon-silicon melts. Acta Materialia. 107, 102-126. https://doi.org/10.1016/j.actamat.2016.01.047
[15] Stefanescu, D.M. Ruxanda, R. & Dix, L.P. (2003). The metallurgy and tensile mechanical properties of thin wall spheroidal graphite irons. Int. Journal of Cast Metals Research. 16(1-3), 319-324. https://doi.org/10.1080/13640461.2003.11819602
[16] Javaid, A. (2001). In Proceedings of Cast Iron Division, AFS 105th Casting Congress, Dallas, USA.
Go to article

Authors and Affiliations

J. Roučka
1
ORCID: ORCID
V. Kaňa
1
ORCID: ORCID
T. Kryštůfek
1
A. Chýlková
1

  1. Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The as-cast microstructure of ductile cast iron (DI) was investigated using light microscopy (LM) and SEM techniques. Further the influence of hot plastic extrusion at 1000°C with plastic strain in the range of 20-60-80% on the transformation of the as-cast microstructure and on the mechanical properties was studied. Besides this, the microstructure of DI subjected to hot extrusion after the fracture of the corresponding samples induced by compression tests was thoroughly investigated. It was found that compression had a dramatic influence on a shear deformation and hence shear fracture of the compressed samples. It was shown that the shear fracture of the hot deformed ductile iron is accompanied by the occurrence of a narrow zone of severe plastic deformation. The fracture surfaces of the extruded samples subjected to the tensile tests and the compression tests were examined.
Go to article

Authors and Affiliations

A.S. Chaus
1
ORCID: ORCID
Ľ. Čaplovič
1
ORCID: ORCID
A.I. Pokrovskii
2
ORCID: ORCID
R. Sobota
1
ORCID: ORCID

  1. Slovak University of Technology, Faculty of Materials Science and Technology, J. Bottu 25, Trnava, 917 24 Slovakia
  2. National Academy of Sciences of Belarus, Physical Technical Institute, 10. Kuprevicha Str., Minsk, 220141 Belarus
Download PDF Download RIS Download Bibtex

Abstract

The presented article concerns the issue of supporting the ADI cast iron product manufacturing process and presents an IT system dedicated mainly to designers and technologists. Designers can be supported at the stage of selecting types of materials and technologies (including ADI cast iron) to produce products with required properties. Technologists can obtain support in determining the parameters (temperature and chemical) of the ADI cast iron manufacturing process in order to obtain products with specific properties. The system also contains an information resources (standards, documentation, examples) concerning ADI cast iron and products made of it. Examples of use by individual system users are presented as a case study.
Go to article

Authors and Affiliations

A. Opaliński
1
ORCID: ORCID
D. Wilk-Kołodziejczyk
1 2
ORCID: ORCID

  1. AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  2. Łukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Several recent earthquakes have indicated that the design and construction of bridges based on former seismic design provisions are susceptible to fatal collapse triggered by the failure of reinforced concrete columns. This paper incorporates an experimental investigation into the seismic response of nonductile bridge piers strengthened with low-cost glass fiber reinforced polymers (LC-GFRP). Three full-scale bridge piers were tested under lateral cyclic loading. A control bridge pier was tested in the as-built condition and the other two bridge piers were experimentally tested after strengthening them with LC-GFRP jacketing. The LC-GFRP strengthening was performed using two different configurations. The control bridge pier showed poor seismic response with the progress of significant cracks at very low drift levels. Test results indicated the efficiency of the tested strengthening configurations to improve the performance of the strengthened bridge piers including crack pattern, yield, and ultimate cyclic load capacities, ductility ratio, dissipated energy capacity, initial stiffness degradation, and fracture mode.

Go to article

Authors and Affiliations

K. Rodsin
Q. Hussain
P. Joyklad
A. Nawaz
H. Fazliani
Download PDF Download RIS Download Bibtex

Abstract

Two standardised grades of spheroidal cast iron determined in standard EN PN 1563 – 1997 as: EN-GJS-350 – 22LT (T = –40°C) and EN GJS 400 – 18LT (T = –20°C) are intended for work at low temperatures: –20 and –40oC. The main mechanical property of these cast iron grades is a high impact strength at a work temperature down to: –40°C. A series of controlled melts was performed to optimise the production technology of spheroidal cast iron, which in as-cast state is characterised by ferritic matrix (the best without any pearlite), fine precipitates of nodular graphite and high purity (without non-metallic inclusions). Variable structures of metal charges and various spheroidisation techniques (the modification methods) (slender ladle with a tight cover – Tundish technology as well as the technology with cored wire) were applied in the research. In order to obtain refinement of graphite precipitates and to achieve the ferritic matrix multistage inoculations of technologies were applied. Cast iron was subjected to refining to limit non-metallic inclusions since they decrease the impact strength. The production process of cast iron was controlled by the thermal derivative analysis at the stage of initial cast iron and after its secondary metallurgy (modification and inoculation). It was pointed out, that the reproducible production of cast iron for work at low temperatures was only possible when all elements of the technological process were strictly adhered to. It was pointed out, in the hereby paper, that: it should be strived to maintain Si content not higher than 2.50÷2.60%, which at producing spheroidal cast iron is sometimes difficult and requires using a lot of pig iron in the metal charge. For a fast assessment of the cast iron quality, concerning its impact strength, the proposed – in the hereby paper – index quality (IQu) can be applied. It is determined on the bases of measuring the cast iron hardness and propagation velocity of ultrasound wave.
Go to article

Authors and Affiliations

J. Zych
1
ORCID: ORCID
T. Jurga
2
J. Mocek
1
M. Myszka
1
T. Snopkiewicz
1

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Odlewnia Żeliwa Drawski S.A, Drawski Młyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article is a description of the progress of research and development in the area of massive large-scale castings - slag ladles implemented in cooperation with the Faculty of Foundry Engineering of UST in Krakow. Slag ladles are the one of the major castings that has been developed by the Krakodlew (massive castings foundry) for many years. Quality requirements are constantly increasing in relation to the slag ladles. Slag ladles are an integral tool in the logistics of enterprises in the metallurgical industry in the process of well-organized slag management and other by-products and input materials. The need to increase the volume of slag ladles is still growing. Metallurgical production is expected to be achieved in Poland by 2022 at the level of 9.4 million Mg/year for the baseline scenario - 2016 - 9 million Mg/year. This article describes the research work carried out to date in the field of technology for the production of massive slag ladles of ductile cast iron and cast steel.

Go to article

Authors and Affiliations

M. Paszkiewicz
Edward Guzik
ORCID: ORCID
D. Kopyciński
ORCID: ORCID
Barbara Kalandyk
ORCID: ORCID
A. Burbelko
ORCID: ORCID
D. Gurgul
S. Sobula
ORCID: ORCID
A. Ziółko
K. Piotrowski
ORCID: ORCID
P. Bednarczyk
Download PDF Download RIS Download Bibtex

Abstract

The article discusses issues related to the melting of grey and ductile cast iron in terms of metallurgical quality. The derivative and thermal analysis (DTA) was used to assess this quality. The article presents the results of research carried out in industrial conditions and analysed by the Itaca system. In the paper, the effect of the furnace type, the charge materials and the inoculation process on the parameters characterising the cast iron being melted was analysed. The most important of these are the minimum eutectic temperature (Te min), the liquidus temperature (T liquidus) and the nucleation rate. The results of the research and calculations are shown in graphs and as dependencies. Some of DTA results were compared to the microstructure analysis results. The article shows that the derivative and thermal analysis is a very effective tool in the assessment of the metallurgical quality of cast iron. It is a very good addition to chemical analysis. Based on the results of the research, it was concluded that a very high correlation exists between the rate of nucleation (DTA) and the number of graphite nuclei (microstructure analysis). Furthermore, it was also found that an improvement in nucleation could be achieved by ensuring a high value of carbon equivalent (CE) and, above all, by conducting the primary and secondary inoculation processes, respectively.
Go to article

Bibliography

[1] Stefanescu, D.M., Suarez, R. & Kim S.B, (2020). 90 years of thermal analysis as a control tool in the melting of cast iron. China Foundry. 17(2), 69-84. https://doi.org/10.1007/s41230-020-0039-x.
[2] Jura, S., Sakwa, J. & Borek, K. (1980). Application of thermal and differential analysis for determination of chemical composition parameters. Krzepnięcie Metali i Stopów. 3, 16-24. (in Polish).
[3] Jura, S., Sakwa, J. & Borek, K. (1980). Differential analysis of solidification and crystallization processes of gray cast iron. Krzepnięcie Metali i Stopów. 3, 25-35. (in Polish).
[4] Jura, Z. & Jura, S. (1990). Calorimetric curve and heat source in thermal and derivational analysis of cast iron solidification process. Krzepnięcie Metali i Stopów. 16, 126-139. (in Polish).
[5] Jura, Z. & Jura, S. (1996). The theory of the TDA method in the study of Al alloys. Krzepnięcie Metali i Stopów. 28, 57-88. (in Polish).
[6] Jura, S., Studnicki, A., Przybył, M. & Jura, Z. (2001). Application of the ATD method to assess the quality of ductile cast iron. Archiwum Odlewnictwa. 1(1), 93-102. (in Polish).
[7] Gawroński, J., Szajnar, J., Jura, Z. & Studnicki, A. (2004). Professor Stanisław Jura, creator of the theory and industrial applications of diagnostics and wear of metals and alloys. Archiwum Odlewnictwa. 4(SI 16), 1-74. (in Polish).
[8] Pietrowski, S. & Władysiak, R. (1996). TDA Inspection of piston silumins. Krzepnięcie Metali i Stopów. 28, 160-173. (in Polish).
[9] Pietrowski, S. & Gumienny, G. (2002). Methodology for preparing the quality assessment of ductile cast iron using the TDA method. Archiwum Odlewnictwa. 2(6). (in Polish).
[10] Pietrowski, S. & Gumienny, G. (2002). Evaluation of the quality of ductile cast iron EN-GJS-400-15 by the TDA method. Archiwum Odlewnictwa. 2(6), 257-268. (in Polish).
[11] Chisamera, M., Riposan, I., Stan, S., Stefan, E. & Costache, G. (2009). Thermal analysis control of in-mould and ladle inoculated grey cast irons. China Foundry. 6(2), 145-151.
[12] Erturka, S.O., Kumruoglub, L.C., Ozel, A. (2017). Determination of feederless casting limits by thermal analysis in cast iron. Acta Physica Polonica A. 131(3), 370-373. DOI: 10.12693/APhysPolA.131.370.
[13] Seidu, S.O. (2013). Thermal analysis of preconditioned ductile cast iron. International Journal of Current Engineering and Technology. 3(3), 813-818. ISSN 2277-4106.
[14] Cojocaru, A.M., Riposan, I. & Stan, S. (2019). Solidification influence in the control of inoculation effects in ductile cast irons by thermal analysis. Journal of Thermal Analysis and Calorimetry.138, 2131-2143. https://doi.org/10.1007/s10973-019-08808-2.
[15] Petrus, Ł., Bulanowski, A., Kołakowski, J., Brzeżański, M., Urbanowicz, M., Sobieraj, J., Matuszkiewicz, G., Szwalbe, L., Janerka, K. (2020). The influence of selected melting parameters on the physical and chemical properties of cast iron. Archives of Foundry Engineering. 20(1), 105-110. DOI: 10.24425/afe.2020.131290.
[16] Petrus, Ł., Bulanowski, A., Kołakowski, J., Sobieraj, J., Paruch, T., Urbanowicz, M., Brzeżański, M., Burdzy, D. & Janerka. K. (2021). Importance of TDA thermal analysis in an automated metallurgical process. Journal of Casting & Materials Engineering. 5(4), 89-93. https://doi.org/10.7494/ jcme.2021.5.4.89.
[17] ProserviceTech. Retrieved June, 30, 2022 from http://www.proservicetech.it/itacax-thermal-analysis-final-iron-quality-control/.
[18] Novacast. Retrieved June, 30, 2022 from https://www.novacast.se/product/atas/.
[19] Heraeus. Retrieved June, 30, 2022 from https://www.heraeus.com/en/hen/products_and_solutions_hen/foundry/thermal_analysis/thermal_analysis.html.
[20] Vesuvius. Retrieved June, 30, 2022 from https://www.vesuvius.com/content/dam/vesuvius/corporate/Our-solutions/our-solutions-master-english/foundry/Newsletter/Issue2/FP-new-issues/FERROLAB%20V.pdf.

Go to article

Authors and Affiliations

J. Kołakowski
1
ORCID: ORCID
M. Brzeżański
1
ORCID: ORCID
D. Burdzy
1
ORCID: ORCID
J. Sobieraj
1
M. Urbanowicz
1
T. Paruch
1
K. Janerka
2
ORCID: ORCID

  1. “Śrem” Iron Foundry Sp. z o.o., ul. Staszica 1, 63-100 Śrem, Poland
  2. Department of Foundry Engineering, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the problems related to smelting gray and ductile cast iron. Special attention is paid to the metallurgical quality of cast iron. It depends on the type of furnace, charge materials and the special combination of charge, overheating and holding temperature, melting time, modification and spheroidization method. The evaluation of metallurgical quality has been performed by using derivativethermal analysis (DTA). During the smelting process and secondary metallurgy, the ITACA system was used allowing to obtain information on alloy characteristic temperatures (Tliquidus, TeMin, TeMax, Tsolidus), VPS value, recalescence value, IGQ coefficient, nucleation gauge, porosity etc. The results of investigations and calculations are displayed in the form of graphs and dependencies. It has been shown that the derivative-thermal analysis (DTA) is an effective complement of chemical analysis and it has been found that both the increase in temperature and metal holding time have a negative impact on the metallurgical quality of liquid metal. The metallurgical quality can be improved by using proper composition of charge materials and modifiers.

Go to article

Authors and Affiliations

Ł. Petrus
A. Bulanowski
J. Kołakowski
ORCID: ORCID
M. Brzeżański
ORCID: ORCID
M. Urbanowicz
J. Sobieraj
G. Matuszkiewicz
L. Szwalbe
K. Janerka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

A classical algorithm Tabu Search was compared with Q Learning (named learning) with regards to the scheduling problems in the Austempered Ductile Iron (ADI) manufacturing process. The first part comprised of a review of the literature concerning scheduling problems, machine learning and the ADI manufacturing process. Based on this, a simplified scheme of ADI production line was created, which a scheduling problem was described for. Moreover, a classic and training algorithm that is best suited to solve this scheduling problem was selected. In the second part, was made an implementation of chosen algorithms in Python programming language and the results were discussed. The most optimal algorithm to solve this problem was identified. In the end, all tests and their results for this project were presented.
Go to article

Bibliography

[1] Yang, L., Jiang, G., Chen, X., Li, G., Li, T. & Chen, X. (2019). Design of integrated steel production scheduling knowledge network system. Claster Comput. 10197-10206.
[2] Żurada, J. Barski, M., Jędruch, W. (1996). Artificial Neural Networks. Fundamentals of theory and application. Warszawa: PWN. (in Polish).
[3] Janiak, A. (2006). Scheduling in computer and manufacturing systems. Warszawa: Wydawnictwa Komunikacji i Łączności.
[4] Smutnicki, C. (2002). Scheduling algorithms. Warszawa: Akademicka Oficyna Wydawnicza EXIT. (in Polish).
[5] Coffman, E.G. (1980). Task scheduling theory. Warszawa: Wydawnictwa Naukowo-Techniczne. (in Polish).
[6] Janczarek, M. (2011). Managing production processes in the enterprise. Lublin: Lubelskie Towarzystwo Naukowe. (in Polish).
[7] Szeliga, M. (2019) Practical machine learning. Warszawa: PWN. (in Polish).
[8] Raschka, S. (2018) Python machine learning. Gliwice: Helion. (in Polish).
[9] Choi, H-S, Kim, J-S. & Lee, D-H. (2011). Real-time scheduling for reentrant hybrid flow shops: A decision tree based mechanism and its application to a TFT-LCD line. Expert System with Application. 38, 3514-3521.
[10] Agarwal, A., Pirkul, H. & Jacob, V.S. (2003). Augmented neutral network for task scheduling. European Journal of Operational Research. 151, 481-502.
[11] Jain, A.S. & Meeran, S. (1998). Jop-shop scheduling using neutral networks. International Journal of Production Research. 36(5), 1249-1272
[12] Fonseca-Reyna, Y.C., Martinez-Jimenez, Y. & Nowe, A. (2017). Q-Learning algorithm performance for m-machine, n-jobs flow shop scheduling problems to minimize makespan, Revista Investigacion Operacional. 38(3), 281-290.
[13] Dewi, Andriansyah, & Syahriza, (2019). Optimization of flow shop scheduling problem using classic algorithm: case study, IOP Conf. Series: Materials Science and Engineering 506.
[14] Putatunda, K. (2001) Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process. Material Science and Engineering A. 315, 70-80.
[15] Dayong Han, Hubei Key, Qiuhua Tang; Zikai Zhang; Jun Cao, (2020). Energy-efficient integration optimization of production scheduling and ladle dispatching in steelmaking plants. IEEE Access. 8, 176170-176187.
[16] Perzyk, M. (2017). The use of production data mining methods in the diagnosis of the causes of product defects and disruptions in the production process. Utrzymanie Ruchu. 4, 45-47. (in Polish).
[17] Perzyk, M., Dybowski, B. & Kozłowski, J. (2019). Introducing advanced data analytics in perspective of industry 4.0 in a die casting foundry. Archives of Foundry Engineering. 19(1), 53-57.
[18] Yescas, M. (2003). Prediction of the Vickers hardness in austempered ductile irons using neural networks. International Journal of Cast Metals Research. 15(5), 513-521.
[19] Report on the contract no. U / 227/2014 implemented at the Foundry Research Institute. (in Polish).
Go to article

Authors and Affiliations

D. Wilk-Kołodziejczyk
1 2
ORCID: ORCID
K. Chrzan
2
ORCID: ORCID
K. Jaśkowiec
2
ORCID: ORCID
Z. Pirowski
2
ORCID: ORCID
R. Żuczek
2
ORCID: ORCID
A. Bitka
2
ORCID: ORCID
D. Machulec
3
ORCID: ORCID

  1. AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  2. Łukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Kraków, Poland
  3. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article discusses benefits associated with the use of silicon carbide in the process of melting gray cast iron and ductile cast iron in induction electric furnaces. It presents the analysis of the impact of various charge materials and the addition of a variable amount of SiC and FeSi to the fixed charge when melting cast iron of grades GJS 400-15 and GJS 500-7 on mechanical properties and microstructure. Moreover, the article includes an analysis of the efficiency of carburization and the increase in the content of silicon during the application of SiC. The article also presents the results of the study of primary modification using silicon carbide at the minimum temperature of Temin eutectic and Tsol solidus. Based on analysis of the literature, conducted research, and calculations, it was found that the addition of silicon carbide has a beneficial impact on the properties of melted cast iron. The addition of SiC in the charge increases the content of C and Si without increasing the amount of contaminations. The addition of SiC at reduced pig iron presence in the charge decreases production costs, while the use of SiC as an inoculant increases both Temin and Tsol, which is beneficial from the point of view of cast iron nucleation.
Go to article

Authors and Affiliations

K. Janerka
1
ORCID: ORCID
Ł. Kostrzewski
2
ORCID: ORCID
M. Stawarz
1
ORCID: ORCID
J. Jezierski
1
ORCID: ORCID
J. Szajnar
1
ORCID: ORCID

  1. Silesian University of Technology, Department of Foundry Engineering, 7 Towarowa Str., 44-100 Gliwice, Poland
  2. Leszczyńska Fabryka Pomp, 15 Fabryczna Str., 64-100 Leszno, Poland
Download PDF Download RIS Download Bibtex

Abstract

High-temperature plastic properties of heat-resistant stainless steel X15CrNiSi 20-12 were assessed on the basis of hot tensile tests and nil strength tests. The results were supported by metallographic analyses using SEM and EDX analysis. The formability of the investigated steel can be divided into roughly three temperature areas. In the temperature range of 900°C to about 1050°C, formability was negatively affected by precipitation of carbide particles at grain boundaries. As the temperature rose to 1200°C, these particles dissolved, resulting in an increase in formability. Further temperature increases resulted in a relatively steep drop in formability caused by overheating of the material. The nil ductility temperature of 1280°C and the nil-strength temperature of 1362°C were determined. The Plastic and strength properties of the investigated material were compared with the deformation behavior of the reference steel X5CrNi 18-10, which shows a significantly wider range of suitable forming temperatures.

Go to article

Authors and Affiliations

R. Kawulok
ORCID: ORCID
I. Schindler
ORCID: ORCID
H. Navrátil
ORCID: ORCID
V. Ševčák
J. Sojka
K. Konečná
ORCID: ORCID
B. Chmiel
Download PDF Download RIS Download Bibtex

Abstract

In this research, nonlinear analysis of composite shear walls (CSWs) with a gap between reinforced concrete wall and steel frame is investigated under cyclic loading by the use of the finite element method (FEM) software ABAQUS. For the purpose of the verification, an experimental test is modelled and comparison of its obtained result with that of the experimental test demonstrates an inconsiderable difference between them; therefore, the reasonable accuracy of the modelling is revealed. Then, effects of different parameters on the behaviour of the CSWs are examined. Gap size between reinforced concrete wall and steel frame, reinforcement percentage, steel sections of beams and columns, and existence of reinforced concrete wall are considered as parameters. It is concluded that change of the parameters affects the ultimate strength, ductility, and energy dissipation of the system. A steel shear wall (SSW) is also modelled and compared with the CSWs. Buckling of the walls is presented as well.

Go to article

Authors and Affiliations

Alireza Bahrami
Mojtaba Yavari
Download PDF Download RIS Download Bibtex

Abstract

This paper describes a fiber-based model proposed for computing the nonlinear longitudinal shear distribution in composite steel-concrete beams. The presented method incorporates the accurate stress-strain relationship with strain softening for concrete and bi-linear constitutive relation for structural steel, both in agreement with Eurocodes, however any one-dimensional constitutive relation can be used. The numerical solution for a simply supported beams loaded with the uniform load, concentrated force and both was presented. The results indicate that the highest value of the shear flow for a beam under an uniform load is at the ends and in the one third of the span length and for the point load, the maximum shear is in the proximity of the concentrated force.

Go to article

Authors and Affiliations

B. Grzeszykowski
E. Szmigiera
Download PDF Download RIS Download Bibtex

Abstract

Rubberized concrete is made up of scrap tyre rubbers where the fine aggregate is partially replaced by it, as the waste rubber is being a threat to the environment. It is estimated that only 4% of the waste tyre is used in the application of civil engineering and also there is shortage of fine aggregates. The primary objective of this study is to investigate the preliminary concrete properties of M25 and M30 concretes. The fine aggregate is replaced by pre-treated crumb rubber with 10, 15 and 20 % of total weight. Various tests are conducted on the rubberized concrete specimens such as compressive strength, split tensile strength, flexural strength and slump test. The investigation is carried out to determine the impact load behavior of hybrid rubberized composite slabs. In addition 0%, 1%, 1.5%, and 2% of replacement of rubber fibers for total weight of coarse aggregate is also made. The specimen of size 300 mm x 300 mm x 50 mm thickness is subjected to drop hammer test to find its performance against the impact loads. The number of blows for the first crack and complete failure of slab was found and the characteristics were studied.

Go to article

Authors and Affiliations

P. Subashree
R. Thenmozhi

This page uses 'cookies'. Learn more