Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Charakterystyką objęto 12 próbek zwałowanych odpadów serpentynitowych oraz 2 próbki gliniastego nadkładu. Próbki odpadów odznaczają się obojętnym i alkalicznym odczynem, bardzo wysoką zawartością przyswajalnego magnezu, natomiast bardzo niską - przyswajalnego fosforu i potasu. Spośród badanych metali ciężkich, chrom i nikiel występują w największych ilościach (odpowiednio do 760 i 4130 mg/kg), potencjalnie toksycznych dla roślin. W odpadach stwierdzono również występowanie azbestu chryzotylowego. Obecność azbestu oraz niekorzystne właściwości chemiczne powodują konieczność przykrycia odpadów serpentynitowych warstwą czwartorzędowych glin występujących w nadkładzie złoża. Warstwa taka zabezpieczy sąsiadujące tereny przed emisją ze zwałowisk oraz stworzy korzystniejsze warunki wegetacji roślinności wprowadzonej w trakcie rekultywacji.
Go to article

Authors and Affiliations

Cezary Kabała
Tomasz Szlachta
Download PDF Download RIS Download Bibtex

Abstract

Anthropogenic forms are important components of the Upper Silesian landscape. Among them, the slag and spoil dumps of coal, ferrous and non-ferrous metals, have an extraordinary aesthetic and document value - they provide evidence of the history of industrialization of this region. Waste rock accumulated in the dumping areas might be a source of utilizable material; thus the existence of most of the dumps is transitional phenomenon. However, a part of forms built from the rocks of low technical parameters have pretty big chance to remain. It happens in Western Europe that some of the dumps are left in the landscape as the evidence of history. They are usually spectacular objects treated as the natural monuments.
Go to article

Authors and Affiliations

Marzena Lamparska-Wieland
Jan Maciej Waga
Download PDF Download RIS Download Bibtex

Abstract

Mercury is ranked third on the Substance Priority List, an index of substances determined to pose the most significant potential threat to human health compiled by the Agency for Toxic Substances and Disease Registry. This element is activated with the extraction of hard coal and accumulated in the natural environment or re-emitted from the waste deposited on dumping grounds. So far, studies on mercury content have focused on the analysis of the dumps surface and the adjacent areas. In this paper, the detection of mercury content inside mining waste dumping grounds was analysed. The recognition of mercury content in the profile of the mining waste dump is important in terms of the dismantling of the facility. The dismantling may pose a risk of environmental pollution with mercury due to the possibility of increased fire risk, re-emission, and the transfer of xenobiotics to another place. In this paper, the study of mercury content in the mining waste dump profile was presented. The research demonstrated that there is no significant relationship between the mercury content and the sampling depth. The mercury content in the mining waste was determined based on the rank and origin of hard coal only. Therefore, intensive efforts should be undertaken to identify the environmental hazards arising from the dismantling of mining waste dumps and to adopt measures to prevent these hazards.
Go to article

Bibliography

[1] S.A. Musstjab, A.K. Bhowmik, S. Qamar, S.T. Abbas Shah, M. Sohail, S.I. Mulla, M. Fasola, H. Shen, Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan. Sci. Total Environ. 569-570, 585-593 (2016).
[2] X. Wang, Z. He, H. Luo, M. Zhang, D. Zhang, X. Pan, G.M. Gadd, Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Sci. Total Environ. 615 (15), 615-623 (2018).
[3] K . Halbach, Ø. Mikkelsen, T. Berg, E. Steinnes, The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567-574 (2017).
[4] D . Yu, H. Duan, Q. Song, X. Li, H. Zhang, H. Zhang, Y. Liu, W. Shen, J. Wang, Characterizing the environmental impact of metals in construction and demolition waste. Environ. Sci. Pollut. Res. 25, 13823-13832 (2018).
[5] J. Yang, M. Takaoka, A. Sano, A. Matsuyama, R. Yanase, Vertical distribution of total mercury and mercury methylation in a landfill site in Japan. Int. J. Environ. Res. Public Health 15 (6), 1252 (2018).
[6] K . Gogola, T. Rogala, M. Magdziarczyk, A. Smolinski, The mechanisms of endogenous fires occurring in extractive waste dumping facilities, Sustainability 12, 2856 (2020). DOI: https://doi.org/10.3390/su12072856
[7] D . Raj, A. Chowdhury, S.K. Maiti, Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Hum. Ecol. Risk Assess. 23, 767-787 (2017).
[8] R . Fernández-Martínez, J.M. Esbrí, P. Higueras, I. Rucandio, Comparison of mercury distribution and mobility in soils affected by anthropogenic pollution around chloralkali plants and ancient mining sites. Sci. Total Environ. 671, 1066-1076 (2019).
[9] A. González-Martínez, M. de Simón-Martín, R. López, R. Táboas-Fernández, A. Bernardo-Sánchez, Remediation of potential toxic elements from wastes and soils: analysis and energy prospects. Sustainability 11, 3307 (2019). DOI: https://doi.org/10.3390/su11123307
[10] U nited Nations Environment Programme, 2013. Global Mercury Assessment, Sources, emissions, releases and environmental transport. Accessed: January 6, 2016 at: http://www.unep.org/PDF/PressReleases/GlobalMercuryAssessment2013.pdf.
[11] N . Howaniec, A. Smolinski, Biowaste utilization in the process of co-gasification with bituminous coal and lignite. Energy 118, 18-23 (2017).
[12] P. Krawczyk, N. Howaniec, A. Smolinski, Economic efficiency analysis of substitute natural gas (SNG) production in steam gasification of coal with the utilization of HTR excess heat. Energy 114, 1207-1213 (2016).
[13] A. Smolinski, N. Howaniec, Analysis of porous structure parameters of biomass chars versus bituminous coal and lignite carbonized at high pressure and temperature – chemometric study. Energies 10, 1457 (2017). DOI: https://doi.org/10.3390/en10101457
[14] J. Zdeb, N. Howaniec, A. Smolinski, Utilization of carbon dioxide in coal gasification – an experimental study. Energies 12, 140 (2019). DOI: https://doi.org/10.3390/en12010140
[15] M. Sexauer, M. Gustin, M. Coolbaugh, B. Engle, R. Fitzgerald, S. Keislar, D. Lindberg, J. Nacht, J. Quashnick, C. Rytuba, H. Sladek, R. Zhang, R. Zehner, Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains. Environ. Geol. 43, 339-351 (2003).
[16] F. Steenhuisen, S.J. Wilson, Development and application of an updated geospatial distribution model for gridding 2015 global mercury emissions. Atmosph. Environ. 211, 138-150 (2019).
[17] A. Michalska, B. Bialecka, A. Bauerek, The hazard of mercury contamination of the environment resulting from the disposal of mining waste. Science and technologies in geology, exploration and mining, Conference Proceedings 3, (2015). ISBN 978-619-7105-33-9 / ISSN 1314-2704. DOI: https://doi.org/10.5593/sgem2015B13
[18] T . Antoszczyszyn, A. Michalska, The potential risk of environmental contamination by mercury contained in coal mining waste. Journal of Sustainable Mining 15, 191-196 (2017).
[19] P. Rompalski, A. Smolinski, H. Krzton, J. Gazdowicz, N. Howaniec, L. Róg, Determination of mercury content in hard coal and fly ash using X-ray diffraction and scanning electron microscopy coupled with chemical analysis. Arab. J. Chem. 12 (8), 3927-3942 (2019).
[20] B.G. Miller, Clean Coal Engineering Technology, Butterworth-Heinemann (2017). ISBN 978-0-12-811365-3.
[21] X. Bai, W. Li, Y. Wang, H. Ding, The distribution and occurrence of mercury in Chinese coals. Int. J. Coal Sci. Technol. 4, 172-182 (2017).
[22] G . Ozbayoglu, Removal of hazardous air pollutants based on commercial coal preparation data. Physicochem. Probl. Miner Process. 49 (2), 621-629 (2013).
[23] H .N. Dougherty, A.P. Schissler, SME Mining Reference Handbook, second ed. Society for Mining, Metallurgy & Exploration (2020). ISBN 978-0-87335-435-6.
[24] J.E. Gray, P.M. Theodorakos, D.L. Fey, D.P. Krabbenhoft, Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA, Environ. Geochem. Health 37, 35-48 (2015).
[25] T .B. Das, S.K. Pal, T. Gouricharan, K.K. Sharma, A. Choudhury, Evaluation of reduction potential of selected heavy metals from Indian coal by conventional coal cleaning. Int. J. Coal Prep. Util. 33, 300-312 (2013).
[26] T . Dziok, A. Strugala, A. Rozwadowski, M. Macherzynski, S. Ziomber, Mercury in the waste coming from hard coal processing. Gospodarka Surowcami Mineralnymi 31 (1), 107-122 (2015).
[27] B. Klojzy-Karczmarczyk, J. Mazurek, Mercury in soils surrounded by selected dumps of coal mining waste. Energy Policy 13 (2), 245-252 (2010).
[28] B. Klojzy-Karczmarczyk, J. Mazurek, Soil contamination with mercury compounds within the range of a conventional coal-fired power plant. Energy Policy 10 (2), 593-601 (2007).
[29] Ministry of Environment. Regulation of the Minister of the Environment of September 9, 2002 on soil quality standards and land quality standards. Journal of Laws 165, 2002, item 1359.
[30] Mining Waste Act. Mining Waste Act (Journal of Laws No. 138 of 2008, 2008, item 865).
[31] Waste Act, 2016. The Waste Act. Journal of Laws of 2016, 2016, item 1987.
Go to article

Authors and Affiliations

Anna Michalska
1
ORCID: ORCID
Adam Smoliński
1
ORCID: ORCID
Aleksandra Koteras
1
ORCID: ORCID

  1. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Floristical studies on dumps of metallurgical complex (T. Sendzimir steelwork in Cracow) were carried out in the years I 982-1998. Several rare alien plant species: Bracliyactis ciliata Ledeb. - not recorded earlier in Poland, Gypsophila perfoliata L. - recorded in 2 localities only, Corispermum leptopterum (Asch.) lljin, Hordeum jubatum L., Kochia scoparia (L.) Schrader, and Salso/a kali L. subsp. ruthenica (lljin) Soó were found. They have been growing numerously and permanently on dumps for several years. Original and secondary geographical distribution, habitats in Poland and on dumps of metallurgical complex have been presented.
Go to article

Authors and Affiliations

Janusz Guzik
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of floristic investigation conducted within the territory of waste dumps in Lower Silesia: landfill of municipal waste Wrocław-Maślice, post-metallurgic waste heap in Siechnice, serpentine dumping grounds in Grochów and slag heaps in Bielawa.

The investigated flora was analyzed with regard to species composition, participation of geographical-historical groups, live forms (according to classification by Raunkiaer), as well as selected ecological factors: light indicator (L), thermal indicator (T), soil moisture (W), trophic indicator (Tr), soil reaction (pH), value of resistance to increased heavy metals content (M). On 4 waste dumps there were found 269 species of vascular plants, belonging to 51 families. Only 5 species occurred on 4 sites, which provides for 2% of all plants recorded. The most numerous families are Asteraceae, Poaceae and Fabaceae. Apophytes dominate in waste dumps flora Hemicryptophytes are the most numerous group.

Analysis of the floras (selected ecological factors) of investigated objects has shown general similarities, but also apparent differences. The most significant differences concerned two parameters: trophism (Tr) and resistance to increased heavy metals content (M).

Go to article

Authors and Affiliations

Anna Koszelnik-Leszek
Magda Podlaska
Klara Tomaszewska
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study was determining of degree of contamination of soil cover as a result of disposing of different industrial wastes and comparison of the soil quality with quality of soils and the grounds described in standards in relation to the reclamation works carried out on the dump. Analysed waste dump belongs to the sparse objects of this type in the Upper Silesian Coal Basin, where both coal mining wastes as well as flying ashes occur.
During investigations there was done a collection of 9 soil samples around the dump using Egner`s cane from the depth of 30 cm. The content of heavy metals was determined (Cd, Co, Cr, Cu, Ni, Pb, Zn) using method of emission spectrometry (ICP-AES) and phase composition studies using the X-ray diffraction method (XRD ).
Obtained results enabled determination of impact of disposed wastes on the degradation of pedosphere of studied area, which represents III group of fallow lands. The contents of heavy metals in soil samples vary in wide spectrum, but do not exceed permissible content of metals and metalloids for the aforementioned soil group. The highest concentrations reaches iron (average content 0,6%), while concentrations of other elements do not exceed 0.02%. In the mineral composition of soil samples the dominant components are typical for soils in the area of post-mining dumps, i.e. quartz, feldspars, clay minerals, represented by kaolinite and illite. The presence of muscovite with a share of < 5% was also found. Minerals from the carbonate group – calcite (< 3.5%) and dolomite (< 0.3%) occur rarely. In the investigated samples there was identified presence of mullite, component typical for wastes coming from energy sector.
Go to article

Authors and Affiliations

Marek Marcisz
1
ORCID: ORCID
Zdzisław Adamczyk
1
ORCID: ORCID
Łukasz Gawor
1
ORCID: ORCID
Katarzyna Nowińska
1
ORCID: ORCID

  1. Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

There are approx. 250 coal waste dumping grounds in Poland, yet there are countries in which this number is even higher. One of the largest sites for depositing mining and power plant waste in the Upper Silesian Coal Basin is the Przezchlebie dumping ground. In the article, it is considered as a secondary deposit of raw materials. An assessment of mining waste collected on the Przezchlebie dumping ground was carried out in terms of its impact on the environment and the possibility of its use. Mining waste samples were tested to determine their chemical composition. Physicochemical properties and chemical compositions of water extracts obtained from the investigated waste and groundwater in the vicinity of the dumping ground were analyzed. Due to the fire hazard resulting from the natural oxidation process of chiefly carbonaceous matter and pyrite, the thermal condition of the dumping ground was assessed. The results of the obtained tests confirmed the slight impact of mining waste deposited on the Przezchlebie dumping ground on the environment. The chemical composition, low radioactive activity of waste itself and the results of water extract tests referred to the permissible values according to the Polish Journal of Laws allow for multi-directional waste management. Due to the significant carbon content, the risk of self-ignition poses a significant threat on the dumping ground. Re-mining of the dumping ground and the recovery of raw materials, including coal contained in waste, will eliminate the risk of fire, allowing for a wider use of waste and, at the same time, will allow for other benefits, e.g. in the form of financial resources and the possibility of managing the dumping ground area.

Go to article

Authors and Affiliations

Zenon Różański
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an impact of the metallurgical wastes dumping site on the following parts of the environment: air, soil and surface waters. Some of the methods used to prevent wastes interactions were showed. The results of the metallurgical wastes leachate samples research, in which toxic metal ions have been found, are presented results of examinations performed on water extracts derived from two types of metallurgical wastes were given. The chemical analysis of water extracts indicate exceeded concentration of toxic metals, such as: lead, arsenic, barium and others. Preliminary results of some metals elimination from the water extracts with PUROLITE ion-exchangers were also presented. The utilised acidous cationit with Na+ groups exchanges the Ba2+ ions in almost 90%, similar to S 930 ionit with chelating groups (Table 5 and 7). Whereas the anionit with hydroxyl groups removes the arsenic ions(V) from the solution with the 60% efficacy (Table 7).

Go to article

Authors and Affiliations

Stanisława Sanak-Rydlewska
Agnieszka Gala
Łukasz Wajda
Download PDF Download RIS Download Bibtex

Abstract

There was done an inventarization of 41 coal mining dumping grounds, gathering waste material from 27 mines. Considering the fact, that five mines belong to multi-motion plants the research comprised 32 hard coal deposits. Source data with localization of particular dumps have been obtained from archival materials from the mines and municipalities, in the boundaries where the dumps occur as well as free accessible published materials (books, scientific papers). The data have been verified, in the beginning on the basis of topographical maps, orthophotomaps and aerial photographs and then, after vision done during field works they have been drawn on the topographic base, what resulted in creating the map of post-mining dumping grounds. Valorisation of coal mining waste dumps, using already repeatedly presented method, included defining of: name of the dump, coal mine from where the wastes come from, state of the dump, surface of the dump, type of technical and biological reclamation, accessibility of the object, possibilities of recovery of coal and the results have been drawn on the map. On the basis of collected and elaborated data there was done an attempt of defining of potential possibilities of recovery of coal from the dumps and connecting of coal quality in exploited deposits and coal content in waste material. The results showed that in spite of initial information that the majority of the dumps comprise potential objects of coal recovery of coal from waste material, eventually only in some cases (thirteen objects) the recovery seems to be economically justified.

Go to article

Authors and Affiliations

Marek Marcisz
ORCID: ORCID
Krystian Probierz
Łukasz Gawor
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The study makes an attempt to assess the impact of uncontrolled waste dumps on soil chemical and biochemical properties. Investigations were carried out on five waste disposal sites situated in the south-eastern outskirts or the city of Lublin. The samples of soils collected from the adjacent arabic land were used as reference material. In soils of four landfills, which were established relatively recently (lour to five years ago); several times higher activity of the examined enzymes (dehydrogcnascs, acid phosphatase, basic phosphatase, urcasc, protease) than in the soils from the adjacent cultivated land was determined. Opposite ti-ends were found in the case ofa waste dump established 20 years ago. The determined lack ofnegative influence or the examined waste dumps on the soil chemical and biochemical properties of the adjacent arabic land shows that the range or the contamination effect on the surrounding area was limited.
Go to article

Authors and Affiliations

Elżbieta Jolanta Bielińska
Agnieszka Mocek-Płóciniak
Download PDF Download RIS Download Bibtex

Abstract

Dumping sites or landfills are considered as foremost common option of waste management worldwide. Dumping sites, often not lined, represent a potential environmental issue causing a long-term risk to the environment and health. A number of computers model-based studies have described the solid waste collection and its management, but provide little information about the relative contributions regarding environmental impacts of landfilling especially in the context of developing world. The aim of study was to estimate environmental impacts from dumping site by using EASEWASTE model. A case study was carried out at an old and closed dumping site filled with mixed waste without bottom liner, no leachate collection and gas collection. On the basis of the existing dumping site investigation, a Mahmood Booti Dumping Site Scenario was developed, and related data of waste generation & composition was collected and added to assess environmental impacts. The results show that human toxicity via soil (9.14E+09 m3 soil) had the highest potential impact, followed by global warming (8.83E+11 Kg CO2-eq), eco-toxicity in water (6.25E+11 m3 water), and eco-toxicity in soil (6.54E+10 m3 soil). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. The adopted risk analysis approach uses easily accessible computer aided models, for open dumping sites, appears to be a key tool to assist decision makers in establishing priorities for remediation action.
Go to article

Bibliography

  1. Alam, A., Tabinda, A.B., Qadir, A., Butt, T.E., Siddique, S. & Mahmood A. (2017). Ecological Risk Assessment of an Open Dumping Site at Mehmood Booti Lahore, Pakistan. Environmental Science and Pollution Research, 24(21), pp. 17889–99. DOI:10.1007/s11356-017-9215-y
  2. Alam, A., Chaudhry, M.N., Mahmood, A., Ahmad, S.R., & Butt,T.E. (2021). Development & application of Conceptual Framework Model (CFM) for environmental risk assessment of contaminated lands. Saudi Journal of Biological Sciences, 28(11),pp. 6167–6177. DOI: 10.1016/j.sjbs.2021.06.069 Buratti, C., Barbanera, M., Testarmata, F. & Fantozzi, F. (2015). Life Cycle Assessment of Organic Waste Management Strategies: An Italian Case Study. Journal of Cleaner Production, 89, pp.125–36. DOI:10.1016/j.jclepro.2014.11.012
  3. Diaz, R. & Warith, M. (2006). Life-Cycle Assessment of Municipal Solid Wastes: Development of the WASTED Model. Waste Management, 26(8), pp. 886–901. DOI:10.1016/j.wasman.2005.05.007
  4. Fatima, S.A., Chaudhry, M. N. & Batool, S.A. (2019). Environmental Impacts of the Existing Solid Waste Management System of Northern Lahore. Chinese Journal of Urban and Environmental Studies, 07(03), pp. 1950013. DOI:10.1142/S2345748119500131
  5. Gentil, E. C., Damgaard, A., Hauschild, M., Finnveden, G., Eriksson, O., Thorneloe, S. & Christensen, T. H. (2010). Models for waste life cycle assessment: Review of technical assumptions. Waste Management, 30(12), pp. 2636–2648. DOI:0.1016/j.wasman.2010.06.004
  6. Grzesik, K. (2017). Comparative environmental impact assessment of the landfilling and incineration of residual waste in Krakow. Environment Protection Engineering, 43(4), pp. 135–148. DOI:10.5277/epel70411
  7. Guleria, A. & Chakma, S. (2019). Probabilistic human health risk assessment of groundwater contamination due to metal leaching: A case study of Indian dumping sites. Human and Ecological Risk Assessment: An International Journal, pp. 1–33. DOI:10.1080/10807039.2019.1695193
  8. Jagoda G.S (2018). Municipal waste thermal treatment installations in Poland – a source of energy of environmental importance. Archives of Environmental Protection, 105, pp. 147–156. DOI:10.24425/124370
  9. Laurent, A., Bakas, I., Clavreul, J., Bernstad, A., Niero, M., Gentil, E. & Christensen, T. H. (2014). Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives. Waste Management, 34(3), pp. 573–588. DOI:10.1016/j.wasman.2013.10.045
  10. Liu, Y., Sun, W. & Liu, J. (2017). Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis. Waste Management, 68, pp. 653–661. DOI:10.1016/j.wasman.2017.06.020
  11. Maalouf, A. & El-Fadel, M. (2019). Life cycle assessment for solid waste management in Lebanon: Economic implications of carbon credit. Waste Management and Research, 37(1), pp. 14–26. DOI:10.1177/0734242X18815951
  12. Mahmood, A. & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7(1), pp. 91–99. DOI:10.1016/j.arabjc.2013.07.002
  13. Mahmood, K., Batool, S. A., Chaudhary, M. N. & Ul-Haq, Z. (2017). Ranking criteria for assessment of municipal solid waste dumping sites. Archives of Environmental Protection, 43(1), pp. 95–105. DOI:10.1515/aep-2017-0009
  14. Maiti, S. K., De, S., Hazra, T., Debsarkar, A. & Dutta, A. (2016). Characterization of Leachate and Its Impact on Surface and Groundwater Quality of a Closed Dumpsite – A Case Study at Dhapa, Kolkata, India. Procedia Environmental Sciences, 35, pp. 391–399. DOI:10.1016/j.proenv.2016.07.019
  15. Majeed, A., Batool, S. & Chaudhry, M. (2018). Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan. Sustainability, 10(7), pp. 2424. DOI:10.3390/su10072424
  16. Mali, S. T. & Patil, S. S. (2016). Life-cycle assessment of municipal solid waste management. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 169(4), pp. 181–190. DOI:10.1680/jwarm.16.00013
  17. Malinauskaite, J., Jouhara, H., Czajczyńska, D., Stanchev, P., Katsou, E., Rostkowski, P. & Spencer, N. (2017). Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy, 141, pp. 2013–2044. DOI:10.1016/j.energy.2017.11.128
  18. Maria, C., Góis, J. & Leitão, A. (2020). Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Reports, 6 (Supplement 1), pp. 364–369. DOI:10.1016/j.egyr.2019.08.074
  19. Marshall, R. E. & Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. Waste Management, 33(4), pp. 988–1003. DOI:10.1016/j.wasman.2012.12.023
  20. Noya, I., Inglezakis, V., González-García, S., Katsou, E., Feijoo, G. & Moreira, M. (2018). Comparative environmental assessment of alternative waste management strategies in developing regions: A case study in Kazakhstan. Waste Management & Research, 36(8), pp. 689–697. DOI:10.1177/0734242X18786388
  21. Parkes, O., Lettieri, P. & Bogle, I. D. L. (2015). Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park. Waste Management, 40, pp. 157–166. DOI:10.1016/j.wasman.2015.03.017
  22. Popiţa, G. E., Baciu, C., Rédey, Á., Frunzeti, N., Ionescu, A., Yuzhakova, T. & Popovici, A. (2017). Life cycle assessment (LCA) of municipal solid waste management systems in Cluj county, Romania. Environmental Engineering and Management Journal, 16(1), pp. 47–58. DOI:10.30638/eemj.2017.006
  23. Rajaeifar, M. A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B. & Rafiee, S. (2015). Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renewable and Sustainable Energy Reviews, 51, pp. 886-898 DOI:10.1016/j.rser.2015.06.037
  24. Ramachandra, T. V., Bharath, H. A., Kulkarni, G. & Han, S. S. (2018). Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews, 82, pp. 1122–1136. DOI:10.1016/j.rser.2017.09.085
  25. Rana, R., Ganguly, R. & Gupta, A. K. (2019). Life-cycle assessment of municipal solid-waste management strategies in Tricity region of India. Journal of Material Cycles and Waste Management, 21(3), pp. 606–623. DOI:10.1007/s10163-018-00822-0
  26. Sharma, B. K. & Chandel, M. K. (2017). Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India. Waste Management and Research, 35(1), pp. 79–91. DOI:10.1177/0734242X16675683
  27. Singh, A. & Raj, P. (2018). Segregation of waste at source reduces the environmental hazards of municipal solid waste in Patna, India. Archives of Environmental Protection, 44(4), pp. 96–110. DOI:10.24425/aep.2018.122306
  28. Smol, M., Kulczycka, J., Lelek, Ł., Gorazda, K. & Wzorek, Z. (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Archives of Environmental Protection, 46(2), pp. 42–52. DOI:10.24425/aep.2020.133473
  29. Szymański, K. & Janowska, B. (2016). Migration of pollutants in porous soil environment. Archives of Environmental Protection, 42(3), pp. 87–95. DOI:10.1515/aep-2016-0026
  30. Thomsen, M., Seghetta, M., Mikkelsen, M. H., Gyldenkærne, S., Becker, T., Caro, D. & Frederiksen, P. (2017). Comparative life cycle assessment of biowaste to resource management systems – A Danish case study. Journal of Cleaner Production, 142, pp. 4050–4058. DOI:10.1016/j.jclepro.2016.10.034
  31. Vimpolšek, B., Jereb, B., Lerher, T., Kutnar, A. & Lisec, A. (2019). Models for life cycle assessment: Review of technical assumptions in collection and transportation processes. Tehnicki Vjesnik, 26(6), pp. 1861–1868. DOI:10.17559/TV-20181209160911
  32. Winkler, J. & Bilitewski, B. (2007). Comparative evaluation of life cycle assessment models for solid waste management. Waste Management, 27(8), pp. 1021–1031. DOI:10.1016/j.wasman.2007.02.023
Go to article

Authors and Affiliations

Asifa Alam
1
Muhammad Nawaz Chaudhry
2
Sajid Rashid Ahmad
3
Aadila Batool
3
Adeel Mahmood
4
Huda Ahmad Al-Ghamdi
5

  1. College of Earth and Environmental Sciences, University of the Punjab, Pakistan
  2. Department of Environmental Science and Policy, Lahore School of Economics, Pakistan
  3. Remote Sensing, GIS and Climatic Research Lab, Department of Space Sciences, University of the Punjab, Pakistan
  4. Department of Environmental Sciences, Government College Women University, Sialkot, Pakistan
  5. Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

There are a huge number of objects constituting a storage place of coal mining waste in the coal basins in Poland and around the world. The article is a continuation of the study on the possibilities of using raw materials deposited on the coal mining waste dumping grounds on the example of the Przezchlebie dumping ground. The possibility of coal recovery from mining waste located on the dumping ground was analyzed. Tests on the quality parameters of waste were carried out, i.e. moisture and ash content, as well as the calorific value of raw waste. The relatively high calorific value and low ash content in the waste served as the basis for further tests related to the separation of coal. Tests on the mining waste enrichment using the complex based on the K-102 Komag pulse separator were carried out. As a result of coal separation, 7.66% of concentrate was obtained (in relation to feed) with the calorific value of 26.16 MJ/kg and ash content of 19.96%. Apart from mining waste, power plant waste (fly ash) can also be found on the dumping ground. They were subjected to tests for the possibility of using them in the production of construction materials, especially concrete and cement. Fly ash from the Przezchlebie dumping ground was classified as silica ash and it was found that it meets the requirements of Polish standard, except for the fineness of 42%. The separation of coal will eliminate the fire hazard on the dumping ground. A possible scenario of managing waste material on a dumping ground, which can be implemented in similar facilities, has been presented.

Go to article

Authors and Affiliations

Zenon Różański
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the research was mapping, inventorization, and valorization of coal mining waste dumps from the mines of JSW SA company, for the needs of recovery of coal from the dump material as well as the reclamation and management of examined facilities. The valorization of post-mining waste dumps has been carried out using a methodology which considers the problems of reclamation, management, accessibility of the dumps as well as environmental hazards connected with disposing of mining and preparation wastes on the ground surface. An inventorization of 10 coal mining waste dumps coming from 6 mines of JSW SA including in their range 7 deposits: Borynia, Jastrzębie, Zofiówka, Budryk, Knurów, Szczygłowice and Pniówek was carried out. The source material within the localization of particular dumps was obtained from archival materials coming from coal mines and municipalities where the dumps are located. Verified data has been drawn on topographical map, which results in the map of coal mining waste dumps. The results of the valorization of the dumps comprise the defining of: the name of the dump, state of the dump, surface of the dump, accessibility, name of the coal mine from where the wastes come from, type of technical and biological reclamation and possibilities of coal recovery, which have been brought on the drawn map. Basing on collected and elaborated data, an attempt of defining of potential possibilities of recovery of coal from the dumps and connection of coal quality in the deposits of JSW SA and in waste material was made. The results of the research showed that in spite of preliminary information that a majority of the investigated dumps may be considered as potential facilities for coal recovery, ultimately the recovery is economically justified only in several cases (5 facilities).

Go to article

Authors and Affiliations

Marek Marcisz
ORCID: ORCID
Łukasz Gawor
ORCID: ORCID
Krystian Probierz
Download PDF Download RIS Download Bibtex

Abstract

Environmental risk assessment is one of the key tools in environmental engineering. This risk assessment can be qualitative or quantitative and it is based on preliminary studies i.e., baseline study for waste disposal sites. Even though the literature exists on baseline study in general, still there is a lack of guidance regarding development of a site-specific baseline study model for a waste disposal site. This study has two-fold aim, firstly, how to develop site-specific baseline study model for a selected dumping site, and secondly, how this site-specific baseline study can support the environmental engineering via mathematical risk estimation. Mahmood Booti Open Dumping Site (MBODS) is selected to demonstrate the development and application of site-specific baseline study model. This is followed by building a framework that shows how the output of the baseline study can lead to environmental engineering via mathematical risk estimation. The paper provides a mechanism of how to construct a bespoke baseline-study model that is readily useable, avoiding procurement of expensive computer software and yet smoothly connecting with the follow-on stages of the risk assessment. The work presented in this paper can be reproduced repeatedly to create site-specific baseline study models for risk assessment of other waste disposal sites in a cost-effective, consistent and cohesive manner.
Go to article

Bibliography

  1. Ahmad, S.R., M.S. Khan, A.Q. Khan, S. Ghazi & Ali S. (2012). Sewage Water Intrusion in the Groundwater of Lahore, its Causes and Protections. Pakistan Journal of Nutrition, 11(5), pp. 484-488.
  2. Alam, A., Tabinda, A. B., Qadir, A., Butt, T. E., Siddique, S., & Mahmood, A. (2017). Ecological Risk Assessment of an Open Dumping Site at Mehmood Booti Lahore, Pakistan. Environmental Science and Pollution Research, 24(21), pp. 17889–17899. DOI:10.1007/s11356-017-9215-y
  3. Alam A., Chaudhry M.N., Ahmad S.R., Batool S.A., Mahmood A., & Al-Ghamdi H.A. (2021a). Application of Easewaste Model for Assessing Environmental Impacts from Solid Waste Landfilling. Archives of Environmental Protection, 47(4), pp. 84 ̶92. DOI:10.24425/Aep.2021.139504
  4. Alam A., Chaudhry M.N., Mahmood A., Ahmad S.R., & Butt T.E. (2021b). Development and Application of Conceptual Framework Model (CFM) for Environmental Risk Assessment of Contaminated Lands. Saudi Journal of Biological Sciences, 28(11), pp. 6167–6177. DOI:10.1016/J.Sjbs.2021.06.069
  5. Alam, A., Chaudhry, M. N., Ahmad, S. R., Ullah, R., Batool, S. A., Butt, T. E., & Mahmood, A. (2022). Application of Landgem Mathematical Model for the Estimation of Gas Emissions From Contaminated Sites. a Case Study of a Dumping Site in Lahore, Pakistan. Environment Protection Engineering, 48(1), pp. 69–81. DOI:10.37190/epe220105
  6. Butt, T. E., Alam, A., Gouda, H. M., Paul, P., & Mair, N. (2017). Baseline Study and Risk Analysis of Landfill Leachate – Current State-of-the-Science of Computer aided approaches. Science of the Total Environment, 580, pp.130–135. DOI:10.1016/j.scitotenv.2016.10.035
  7. Butt, T. E. Entwistle, J. A. Sagoo, A. S. Akram, H. & Massacci, G. (2019). Combined Risk Assessment for Landfill Gas and Leachate – Informing contaminated land reclamation for appropriate construction projects, The 17th International Waste Management and Landfill Symposium, 30 September - 04 October, Sardinia, Italy
  8. Butt, T. E., Javadi, A. A., Nunns, M. A., & Beal, C. D. (2016). Development of a Conceptual Framework of Holistic risk assessment — Landfill as a Particular Type of Contaminated Land. Science of the Total Environment, 569, pp 815–829. DOI:10.1016/j.scitotenv.2016.04.152
  9. Butt, T.E., Gouda, H.M., Baloch, M.I., Paul, P., Javadi, A.A., & Alam, A. (2014). Literature review of baseline study for risk analysis. Environmental International, 63, pp.149–162.
  10. Environment Agency. (2011). Waste and Resources Assessment Tool for the Environment (WRATE), Environment Agency. http://www.environment-agency.gov.uk/research/commercial/102922.aspx,
  11. EPA (Environment Protection Agency) US. (2004 November). EPA’s Multimedia, Multipathway, and Multireceptor Risk Assessment (3MRA) Modelling System – A review by the 3MRA review panel of the EPA science advisory board, EPA-SAB-05-003, EPA.
  12. Environment Agency. (2003). LandSim 2.5 – groundwater risk assessment tool for landfill design. Bristol: Environment Agency.
  13. Gołek-Schild, J. (2018). Municipal Waste Thermal Treatment Installations in Poland – a Source of Energy of Environmental Importance. Zeszyty Naukowe IGSMiE PAN, 105, pp. 147–156. DOI: 10.24425/124370 (in Polish)
  14. Haydar, S., Haider, H., Bari, A. J., & Faragh, A. (2012). Effect of Mehmood Booti Dumping Site in Lahore on Ground Water Quality. Pakistan Journal of Engineering and Applied Sciences, 10, pp 51–56.
  15. Mahmood, Khalid, Batool, S. A., Chaudhry, M. N., & Daud, A. (2015). Evaluating Municipal Solid Waste Dumps using Geographic Information System. Polish Journal of Environmental Studies, 24(2), pp. 879–886.
  16. Mahmood, K., Batool, S. A., & Chaudhry, M. N. (2016). Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS. Waste Management, 55, pp 118–128. DOI:10.1016/j.wasman.2016.04.020
  17. Mahmood, A., Eqan, M., Pervez, S., Tabinda, A.B., Yasar, A., Brindhadevi, K. & Pugazhendhi, A. (2020). COVID-19 and frequent use of hand sanitizers; human health and environmental hazards by exposure pathways. Science of the Total Environment, 742, 140561. DOI:10.1016/j.scitotenv.2020.140561.
  18. Mahmood, A., Malik, R.N., Syed, J.H., Li, J., Zhang, G. (2015a). Dietary exposure and screening-level risk assessment of Polybrominated diphenyl ethers (PBDEs) and Dechloran plus (DP) in wheat, rice, soil and air along two tributaries of the River Chenab, Pakistan. Chemosphere.118, pp. 57–64.
  19. Mahmood, A., Malik, R.N., Li, J., Zhang, G. (2015b). Distribution, congener profile, and risk of polybrominated diphenyl ethers (PBDEs) and dechloran plus (DP) in water and sediment from two tributaries of the Chenab River, Pakistan. Archives of Environmental Contaminations. 68(1), pp. 83-91.
  20. Mahmood, A., Malik, R. N., Li, J., & Zhang, G. (2014a). Levels, distribution pattern and ecological risk assessment of organochlorines pesticides (OCPs) in water and sediments from two tributaries of the Chenab River, Pakistan. Ecotoxicology, 23(9), pp. 1713–1721. DOI:10.1007/s10646-014-1332-5
  21. Mahmood, A., Malik, R.N., Li, J. & Zhang, G. (2014b). Levels, distribution profile and risk assessment of polychlorinated biphenyls (PCBs) in water and sediment from two tributaries of River Chenab, Pakistan. Environmental Science and Pollution Research. 21, pp. 7847–7855.
  22. Muhammad, A. M., & Zhonghua, T. (2014). Municipal Solid Waste and its Relation with Groundwater Contamination in. Resrearch Journal of Applied Sciences, Engineering and Technology, 7(8), pp 1551–1560. DOI:10.19026/rjaset.7.431
  23. Policy and Regulations on SWM– Pakistan (2010). Extract from the report "Converting Waste Agricultural Biomass into Energy Source - Legal Framework and Financing Mechanisms for Waste Agricultural Biomass (WAB)/Solid Waste in District Sanghar, Pakistan”
  24. Scientific Software Group. (2012). HELP model, landfill design – risk assessment models and modelling/modelling software. http://www.geology-software.com/help.html, (Viewed January).
  25. Singh, A. & Raj, P. (2018). Segregation of waste at source reduces the environmental hazards of municipal solid waste in Patna, India. Archives of Environmental Protection, 44(4), pp. 96–110. DOI:10.24425/aep.2018.122306
  26. Smol, M., Kulczycka, J., Lelek, Ł., Gorazda, K. & Wzorek, Z. (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Archives of Environmental Protection, 46(2), pp. 42–52. DOI:10.24425/aep.2020.133473
  27. Szymański, K. & Janowska, B. (2016). Migration of pollutants in porous soil environment. Archives of Environmental Protection, 42(3), pp. 87–95. DOI:10.1515/aep-2016-0026
  28. Golder Associates. (2016). GasSim 2.5, Golder Associates, Website: http://www.gassim.co.uk/Technical_Information.html, (Viewed: 16 August)
  29. Landcare Research (Manaaki Whenua Land care Research – a New Zealand Crown Research Institute). (2003). Risk Assessment Model Reviews, http://www.contamsites.landcarere search.co.nz/risk_assessment_models_reviews.htm
  30. RockWare, 2016. RockWorks 17. Rock Ware Inc. (2004–2016), Website: https//www.rockware.com, (Viewed: 16 August).
  31. Robinson, P. (1997). Geo-technical Engineer. Environment Agency, Pers. Commu.
  32. Vrabel, R., Abas, M., Tanuska, P., Vazan, P., Kebisek, M., Elias, M. & Pavliak, D. (2015). Mathematical Approach to Security Risk Assessment. Mathematical Problems in Engineering, 1, pp 1–11. DOI:10.1155/2015/417597
  33. Zhang, Z., Li, K., & Zhang, L. (2016). Research on a Risk Assessment Method considering Risk Association. Mathematical Problems in Engineering, ID 9191360, pp. 1-7. DOI:10.1155/2016/9191360
Go to article

Authors and Affiliations

Asifa Alam
1
Adeel Mahmood
2
M. Nawaz Chaudhry
3
Sajid Rashid Ahmad
1
Noor Ul Safa
2
Huda Ahmed Alghamdi
4
Heba Waheeb Alhamdi
4
Rizwan Ullah
5

  1. College of Earth and Environmental Sciences, University of the Punjab Lahore, Pakistan
  2. Department of Environmental Sciences, GC Women University Sialkot, Pakistan
  3. Lahore Schools of Economics, Lahore, Pakistan
  4. Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
  5. Department of Zoology, Mirpur University of Science of Technology (MUST), Mirpur Azad Kashmir, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

This study rigorously examines the pressing issue of dump slope stability in Indian opencast coal mines, a problem that has led to significant safety incidents and operational hindrances. Employing machine learning algorithms such as Random Forest (RF), k-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), and Gaussian Naive Bayes (GNB), the study aims to achieve a scientific goal of predictive accuracy for slope stability under various environmental and operational conditions. Promising accuracies were attained, notably with RF (0.98), SVM (0.98), and DT (0.97). To address the class imbalance issue, the Synthetic Minority Oversampling Technique (SMOTE) was implemented, resulting in improved model performance. Furthermore, this study introduced a novel feature importance technique to identify critical factors affecting dump slope stability, offering new insights into the mechanisms leading to slope failures. These findings have significant implications for enhancing safety measures and operational efficiency in opencast mines, not only in India but potentially globally.
Go to article

Authors and Affiliations

Sudhir Kumar Singh
1
ORCID: ORCID
Debashish Chakravarty
1
ORCID: ORCID

  1. Indian Institute of Technology, Department of Mining Engineering, Kharagpur, India
Download PDF Download RIS Download Bibtex

Abstract

Post-mining dumps are a common sight in the industrial areas of Silesia (Poland). Despite several reclamation projects, many of them still constitute an unresolved problem. It is not only a matter of unaesthetic view – they often pose a threat to the environment and the people living nearby. Despite revitalization, some dumps are not properly maintained and are at the risk of slope failure. Such places require constant geodetic observation and stability control. In this article, the example of a dump located in the city of Gliwice was used to show the possibilities offered by the use of photogrammetry and unmanned aerial vehicles (UAV) for cyclic checks of the embankment condition. The current state of the dump and the results of interventions after two incidents of slope failure,were observed. The main slopes of the terrain surface and at the selected cross-sections were determined in two flight missions. The obtained geometrical data were used in the further numerical analysis. Finite Element Method model representing one of the escarpment cross-sectionswas built to estimate the factor of safety and determine the main mechanisms responsible for the failure. Elastic-perfectly plastic Coulomb-Mohr model was used to describe the behaviour of the minestone and the ‘ c – tan φ reduction’ – for calculation of the stability. The problem of reliable material properties’ estimation was emphasized. The analysis included the impact of seepage and total head difference on the slope stability. It was concluded that the rainfall intensity had a decisive influence on the instability of the dump.
Go to article

Authors and Affiliations

Magdalena Wróblewska
1
ORCID: ORCID
Magdalena Kowalska
1
ORCID: ORCID
Marian Łupieżowiec
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, Department of Geotechnics and Roads, Akademicka 5, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more