Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The object of the article is the “dying process” of a dear one, as lived by himself, his family, and the medical personnel, and as described and analyzed by the psychologist Elisabeth Kübler-Ross. First, the patient’s reactions to death were presented: denial and isolation, anger and rebellion, bargaining, depression, and acceptance. The next part describes the reactions of the family in the face of the prospect of death: the stage of rejection and isolation, the stage of anger and rebellion, the stage of compromise and making pacts, the stage of experiencing depression, and the stage of acceptance. At the end of our reflection, we indicated the essential elements of an “end of life ethics”, which would permit us to approach, in a more conscious and responsible manner, “our” mysterium mortis at a personal level, in the family and in hospital. These elements are: the attitude of listening, valuing the past as a legacy for the future, the mediation function in and through the reactions of the sick person, the attitude of respect towards the person’s choices of values in the face of death, understanding the sick world, help and pastoral service, and acceptance of failures.
Go to article

Authors and Affiliations

Edmund Kowalski
1

  1. Academia Alfonsiana w Rzymie
Download PDF Download RIS Download Bibtex

Abstract

In this study, the alloying of Ti, Al and Dy powders by high energy ball milling, and the spark plasma sintering (SPS) characteristics of as milled powders have been investigated based on the observation of microstructure. Pure Ti, 6wt% Al and 4wt% Dy powders were mixed and milled with zirconia balls at 600 ~ 1000 rpm for 3h in an Ar gas. The initial sizes of Ti, Al and Dy powders were approximately 20, 40, and 200 μm, respectively. With increasing the milling speed from 600 to 1000 rpm, the size of mixing powders reduced from 120 to 15 μm. On the other hand, from XRD results of powders milled at higher speeds than 700rpm, the peaks of Ti3Al and AlDy phases were identified, indicating the successful alloying. Therefore, the powders milled at 800 rpm have been employed for the SPS under the applied pressure of 50 MPa at 1373K for 15 min. In the SPSed sample, the Al3Dy and two ternary Ti-Al-Dy phases were newly detected, while the peak of AlDy phase disappeared. The SPSed Ti-6Al-4Dy alloy revealed high relative density and micro-hardness of approximately 99% and 950Hv, respectively.
Go to article

Bibliography

[1] M . Selva Kumar, P. Chandrasekar, P. Chandramohan, M. Mohanraj, Mater. Charact. 73, 43-51 (2012).
[2] T. Matsuo, T. Nozaki, T. Asai, S.Y. Chang, M. Takeyama, Intermetallics 6, 695-698 (1998).
[3] K. Kondoh, T. Threrujirapapomg, J. Umeda, B. Fugetsu, Compos. Sci. Tech. 72, 1291-1297 (2012).
[4] F . Petzoldt, V. Friederici, P. Imgrumd, C. Aumund-Kopp, J. Korea Powder Metall. Inst. 21, 1-6 (2014).
[5] Y. Song, D.S. Xu, R. Yang, D. Li, W.T. Wu, Z.X. Guo, Mater. Sci. and Eng. A A260, 269-274 (1999).
[6] T. Kawabata, T. Tamura, O. Izumi, Metall. Trans. 24A, 141-150 (1993).
[7] S.M. Park, S.W. Nam, J.Y. Cho, S.H. Lee, S.G. Hyun, T.S. Kim, Arch. Metall. Mater. 65, 1281-1285 (2020).
[8] S.W. Nam, R.M. Zarar, S.M. Park, S.H. Lee, S.G. D.H. Kim, T.S. Kim Arch. Metall. Mater. 65, 1273-1276 (2020).
[9] S .M. Hong, E.K. Park, K.Y. Kim, J.J. Park, M.K. Lee, C.K. Rhee, J.K. Lee, Y.S. Kwon, J. Kor. Powd. Met. Inst. 19, 32-39 (2012).
[10] H.P. Klug, L.E. Alexander, John Wiley and Sons, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York 1997.
[11] S .J. Park, Y.S. Song, K.S. Nam, S.Y. Chang, J. Kor. Powd. Met. Inst. 19, 122-126 (2012).
[12] S .Y. Chang, B.S. Kim, Y.S. Song, K.S. Nam, J. Nanosci. and Nanotech. 12, 1353-1356 (2012).
[13] B.S. Kim, D.H. Lee, S.Y. Chang, Modern Physics Letters B 23, 3919-3923 (2009).
[14] T. Takeuchi, M. Tabuchi, H. Kageyama, Y. Suyama, J. Am. Ceram. Soc. 82, 939-943 (1999).
[15] Z.J. Shen, M. Johnson, Z. Zhao, M. Nygren, J. Am. Ceram. Soc. 85, 1921-1927 (2002).
[16] G.D. Zhan, J.D. Kuntz, J.L. Wan, A.K. Mukherjee, Nat. Mat. 2, 38-42 (2003).
[17] J.Y. Suh, Y.S. Song, S. Y. Chang, Arch. Metall. Mater. 64, 567-571 (2019).
[18] S .Y. Chang, S.T. Oh, M.J. Suk, C.S. Hong, J. Kor. Powd. Met. Inst. 21, 97-101 (2014).
[19] L. Gao, H. Miyamoto, J. Inorg. Mater. 12, 129-133 (1997). [20] M . Tokita, J. Soc. Powder Technol. 30, 790-804 (1993).
[21] D.J. Kim et al., Korean Powder Metallurgy Inst, Powder Metallurgy & Particulate Materials Processing, Seoul 2010.
[22] H. Zhou, W. Liu, S. Yuan, J. Yan, J. Alloys and Comp. 336, 218- 221 (2002).
[23] S. Niemann, W. Jeitschko, J. Solid State Chem. 114, 337-341 (1995).
[24] S. Niemann, W. Jeitschko, J. Solid State Chem. 116, 131-135 (1995).
[25] http://asm.matweb.com/search/SpecificMaterial.asp?bassnum =MTP641.
[26] S .Y. Chang, S.J. Cho, S.K. Hong, D.H. Shin, J. Alloys and Comp. 316, 275-279 (2001).
[27] W.H. Lee, J.G. Seong, Y.H. Yoon, C.H. Jeong, C.J. Van Tyne, H.G. Lee, S.Y. Chang, Ceramics Inter. 45, 8108-8114 (2019).
Go to article

Authors and Affiliations

Yuri Kim
1
Hoseong Rhee
1
ORCID: ORCID
Si Young Chang
1
ORCID: ORCID

  1. Korea Aerospace University, Department of Materials Science and Engineering, Goyang 10540, Korea
Download PDF Download RIS Download Bibtex

Abstract

Recently, since the demand of rare earth permanent magnet for high temperature applications such as an electric motor has increased, dysprosium (Dy), a heavy rare earth element, is becoming important due to severe bias in its production. To fulfill the increasing need of Dy, recycling offers as a promising alternative. In recycling of rare earths, Hydro-metallurgical extraction method is mainly used however it has adverse environmental effects. Liquid metal extraction on the other hand, is an eco-friendly and simple method as far as the reduction of rare earth metal oxide is concerned. Therefore, liquid metal extraction was studied in this research as an alternative to the hydro-metallurgical recycling method. Magnesium (Mg) is selected as solvent metal because it doesn’t form intermetallic compounds with Fe, B and has a low melting and low boiling point. Extraction behavior of Dy in (Nd,Dy)-Fe-B magnet is observed and effect of Mg ratio on extraction of Dy is confirmed.

Go to article

Authors and Affiliations

Sangmin Park
Sun-Woo Nam
ORCID: ORCID
Ju-Young Cho
ORCID: ORCID
Sang-Hoon Lee
ORCID: ORCID
Seung-Keun Hyun
Taek-Soo Kim
ORCID: ORCID

This page uses 'cookies'. Learn more