Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The goal of the proposed computational model was to evaluate the dynamical properties of air gauges in order to exploit them in such industrial applications as in-process control, form deviation measurement, dynamical measurement. The model is based on Reynolds equations complemented by the k-ε turbulence model. The boundary conditions were set in different areas (axis of the chamber, side surfaces, inlet pipeline and outlet cross-section) as Dirichlet's and Neumann's ones. The TDMA method was applied and the efficiency of the calculations was increased due to the "line-by-line" procedure. The proposed model proved to be accurate and useful for non-stationary two-dimensional flow through the air gauge measuring chamber.

Go to article

Authors and Affiliations

Czeslaw Jermak
Andrzej Spyra
Miroslaw Rucki
Download PDF Download RIS Download Bibtex

Abstract

In the article, the authors analyze and discuss several models used to the calculation of air gauge characteristics. The model based on the actual mass flow (which is smaller than the theoretical one) was proposed, too. Calculations have been performed with a dedicated software with the second critical parameters included. The air gauge static characteristics calculated with 6 different models were compared with the experimental data. It appeared that the second critical parameters model (SCP) provided the characteristics close to the experimental ones, with an error of ca. 3% within the air gauge measuring range.

Go to article

Bibliography

[1] M. Mennesson. High precision measurement method of lengths and thicknesses. Comptes Rendus des Seances de l’Academie des Sciences, 194(25.4.1932):1459–1461, 1932.
[2] W.J. Gluchow and A.A. Tupolew. Non-contact pneumatic measuring control devices for the production of workpieces with discontinuous surfaces. Feingeratetechnik, 23(2):69–73, 1974. (in German).
[3] E.I. Ped. Optimization of the constructional elements choice of the air gauges designed for the dynamic measurements. Measurement Techniques, 7:29–31, 1981. (in Russian).
[4] F.T. Farago and Curtis M.A. Handbook of Dimensional Measurement. Industrial Press Inc., New York, 1994.
[5] G. Schuetz. Pushing the limits of air gaging-and keeping them there. Quality, 54(7):22–26, 2015.
[6] G. Schuetz. Air gaging gets better with age. Quality, 3:28–32, 2008.
[7] L. Finkelstein. Reflections on a century of measurement science as an academic discipline. Metrology and Measurement Systems, 14(4):635–638, 2007.
[8] M. Rucki, B. Barisic, and G. Varga. Air gauges as a part of the dimensional inspection systems. Measurement, 43(1):83–91, 2010. doi: 10.1016/j.measurement.2009.07.001.
[9] T. Janiczek and J. Janiczek. Linear dynamic system identification in the frequency domain using fractional derivatives. Metrology and Measurement Systems, 17(2):279–288, 2010. doi: 10.2478/v10178-010-0024-6.
[10] V.B. Bokov. Pneumatic gauge steady-state modelling by theoretical and empirical methods. Measurement, 44(2):303–311, 2011. doi: 10.1016/j.measurement.2009.01.015.
[11] B. Dobrowolski, Z. Kabza, and A. Spyra. Digital simulation of air flow through a nozzle of pneumatic gauge. In Proc. 33rd Annual Conference JUREMA, pages 67–70, 1988.
[12] M.N. Abhari, M. Ghodsian, M. Vaghefi, and N. Panahpur. Experimental and numerical simulation of flow in a 90° bend. Flow Measurement and Instrumentation, 21(3):292–298, 2010. doi: 10.1016/j.flowmeasinst.2010.03.002.
[13] J. Peng, X. Fu, and Y. Chen. Response of a swirlmeter to oscillatory flow. Flow Measurement and Instrumentation, 19(2):107–115, 2008. doi: 10.1016/j.flowmeasinst.2007.10.002.
[14] C. Crnojevic, G. Roy, A. Bettahar, and P. Florent. The influence of the regulator diameter and injection nozzle geometry on the flow structure in pneumatic dimensional control systems. Journal of Fluids Engineering, 119:609–615, 1997. doi: 10.1115/1.2819288.
[15] C. Jermak, editor. Theory and Practice of Air Gauging. Poznan University of Technology, 2011.
[16] T. Kiczkowiak and S. Grymek. Critical pressure ratio b as defined in iso 6358 and iso 6953 standards. Pomiary Automatyka Kontrola (Measurement, Automation, Monitoring), 57:559– 562, 2011. (in Polish).
[17] A Cellary and C.J. Jermak. Dynamics of a cascade pneumatic sensor for length measurements. In Proc. of Optoelectronic and Electronic Sensors II, pages 36–39. International Society for Optics and Photonics, 1997. doi: 10.1117/12.266719.
[18] A.V. Deych. Technical gasodynamics. Gosenergoizdat, Moscow, 1961. (in Russian).
[19] M. Kabacinski, C. T Lachowicz, and J. Pospolita. Numerical analysis of flow averaging tubes in the vortex-shedding regime. Archive of Mechanical Engineering, 60(2):283–297, 2013. doi: 10.2478/meceng-2013-0018.
[20] Koscielny W. and C. Wozniak. Models of the flow characteristics of the pneumatic restrictors. In Proc. PNEUMA’95, pages 73–82, 1995. (in Polish).
[21] Koscielny W. and C. Wozniak. Experimental evaluation of the models of the pneumatic restrictors flow characteristics. In Proc. PNEUMA’95, pages 83–92, 1995. (in Polish).
[22] Automation of the pneumatic dimensional measurement in mechanical engineering. Mashinostroyeniye, Moscow, 1964. (in Russian).
[23] C.J. Jermak. Methods of shaping the metrological characteristics of air gages. Strojniski Vestnik/Journal of Mechanical Engineering, 56(6):385–390, 2010.
[24] R.J. Soboczynski. Investigations on the metrological properties of high pressure air gauges. PhD thesis, Wrocław Technical University, 1977. (in Polish).
[25] Calculation of the high pressure air gauges characteristics. Journal Measuring Techniques, 6:107, 1971.
[26] Guide to the expression of uncertainty in measurement. Warszawa, Główny Urząd Miar, 1999. (in Polish).
[27] C.J. Jermak and M. Rucki. Air gauging: Static and dynamic characteristics. IFSA, Barcelona, Spain, 2012.
[28] C.J. Jermak and M. Rucki. Air gauging: Still some room for development. AASCIT Communication, 2(2):29–34, 2015.
Go to article

Authors and Affiliations

Czeslaw Janusz Jermak
1
Ryszard Piątkowski
2
Janusz Dereżyński
1
Miroslaw Rucki
3

  1. Institute of Mechanical Technology, Poznan University of Technology, Poland
  2. Chair of Thermal Engineering, Poznan Univesity of Technology, Poland
  3. Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland
Download PDF Download RIS Download Bibtex

Abstract

The commercially available metal-oxide TGS sensors are widely used in many applications due to the fact that they are inexpensive and considered to be reliable. However, they are partially selective and their responses are influenced by various factors, e.g. temperature or humidity level. Therefore, it is important to design a proper analysis system of the sensor responses. In this paper, the results of examinations of eight commercial TGS sensors combined in an array and measured over a period of a few months for the purpose of prediction of nitrogen dioxide concentration are presented. The measurements were performed at different relative humidity levels. PLS regression was employed as a method of quantitative analysis of the obtained sensor responses. The results of NO2 concentration prediction based on static and dynamic responses of sensors are compared. It is demonstrated that it is possible to predict the nitrogen dioxide concentration despite the influence of humidity.

Go to article

Authors and Affiliations

Paweł Kalinowski
Łukasz Woźniak
Grzegorz Jasiński
Piotr Jasiński
Download PDF Download RIS Download Bibtex

Abstract

While cycloid pin-wheel precision reducers (referred to as RV reducers) are widely used in industrial robots, a widely accepted design standard or verification method of their test platforms is not available. In this study, a comprehensive sliding-separation test platform of RV reducers was developed. The test platform can test various measurement items such as transmission error, static measurement of lost motion, dynamic measurement of lost motion, torsional rigidity, no-load running torque, starting torque, backdriving torque, and transmission efficiency of the RV reducer for robots. The principle and method of dynamic measurement of lost motion tests based on the two-way transmission error method were studied and this test function was successfully integrated with the comprehensive test platform in order to increase the test items of the dynamic performance parameters of RV reducers. The measurement results of the no-load running torque of the RV reducer were consistent with the Stribeck curve. Based on the concept of optimal measurement speed, a decomposition test method of the geometric component of the dynamic measurement of lost motion and the elastic component of the dynamic measurement of lost motion was proposed in the dynamic measurement test of lost motion. Through precision calibration, function test and repeatability test, the results were compared with the data of enterprise’s samples. The consistent results have proved that the test platform met engineering requirements and measurement accuracy requirements. Based on the new test principle, the developed platform can test more parameters of RV reducers with high precision and display the comprehensive test performance.
Go to article

Authors and Affiliations

Huijun Yue
1
Xiangkai Wu
1
Zhaoyao Shi
1
Yue Zhang
1
Yong Ye
1
Lintao Zhang
1
Ying Fu
1

  1. Beijing University of Technology, Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100, Ping Le Yuan, Chaoyang District, Beijing 100124, China

This page uses 'cookies'. Learn more