Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, solidification/stabilization (S/S) of electric arc furnace dust (EAFD) which is generated during the production of steel from scrap metals and classified as hazardous waste were investigated by using different ratios of cement and low grade MgO (LG MgO) as binding agents. Type I PC 42.5 R portland cement and LG MgO which contains 70–80% MgO were used. S/S blocks that contain different ratios of binding agents which have 1/0.5 – 1/1 – 1/2 – 1/3 – 1/4 – 1/5 cement/LG MgO ratio and S/S blocks which contain only cement and no LG MgO agents were prepared. These blocks, which contain 3 different waste ratios according to weight, 20%, 30% and 40% respectively, were produced and exposed to 28-day water purification. At the end of the purification process, S/S blocks were extracted using TCLP (Toxicity Characteristic Leaching Procedure) tests in order to determine the leaching behavior of Zn, Pb, and Cd in S/S blocks. By the end of this study, it was concluded that the recovery of EAFD is possible and applicable by immobilization. The findings of the study concluded that environmental performances or structural properties of blocks contain 30% waste by weight are suitable. This method is a proper one for recovering and treatment of EAFD with mixture of cement and LG MgO.

Go to article

Authors and Affiliations

Ahmet Can Bayraktar
Edip r Avşa
İsmail Toröz
Kadir Alp
Asude Hanedar
Download PDF Download RIS Download Bibtex

Abstract

Dust generated at an electric arc furnace during steel production industry is still not a solved problem. Electric arc furnace dust (EAF) is a hazardous solid waste. Sintering of well-prepared briquetted mixtures in a shaft furnace is one of possible methods of EAFD utilisation. Simultaneously some metal oxides from exhaust gases can be separated. In this way, various metals are obtained, particularly zinc is recovered. As a result, zinc-free briquettes are received with high iron content which can be used in the steelmaking process. The purpose of the research was selecting the appropriate chemical composition of briquettes of the required strength and coke content necessary for the reduction of zinc oxide in a shaft furnace. Based on the results of the research the composition of the briquettes was selected. The best binder hydrated lime and sugar molasses and the range of proper moisture of mixture to receive briquettes of high mechanical strength were also chosen and tested. Additionally, in order to determine the thermal stability for the selected mixtures for briquetting thermal analysis was performed. A technological line of briquetting was developed to apply in a steelworks.

Go to article

Authors and Affiliations

Aneta Magdziarz
Monika Kuźnia
Michał Bembenek
Paweł Gara
Marek Hryniewicz
Download PDF Download RIS Download Bibtex

Abstract

Zinc is present in electric arc furnace dust (EAFD) mainly in two basic minerals, namely as franklinite ZnFe2O4 and/or zincite ZnO. While zincite is relatively reactive and easily treatable, franklinite is considerably refractory, which causes problems during EAFD processing. In this work EAFD containing 18.53% Zn was leached in water solution of ammonium carbonate. This leaching solution selectively leaches zincite, while franklinite is refractory and stable against leaching in this case. The temperature dependence of zinc leaching from EAFD was studied and the activation energy EA was determined by two methods: 1.) classically based on zinc chemical analyses from the leaching solution and 2.) by using of X-Ray diffraction qualitative phase analyses of leaching residues. The determined values of activation energies 37.41 and 38.55 kJmol–1 match perfectly, which show the excellent possibility of using X-Ray diffraction toward the study of leaching kinetics at properly chosen experimental conditions. The important result is the determination of the amount zincite and franklinite in EAFD, which is not possible by using of classical chemical methods.
Go to article

Authors and Affiliations

T. Havlik
G. Maruskinova
A. Miskufova

This page uses 'cookies'. Learn more