Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 40
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Pulse electrochemical machining (PECM) provides an economical and e.ective method for machining high strength, heat-resistantmaterials into complex shapes such as turbine blades, die, molds and micro cavities. Pulse Electrochemical Machining involves the application of a voltage pulse at high current density in the anodic dissolution process. Small interelectrode gap, low electrolyte .ow rate, gap state recovery during the pulse o.-times lead to improved machining accuracy and surface .nish when compared with ECM using continuous current. This paper presents a mathematical model for PECM and employs this model in a computer simulation of the PECM process for determination of the thermal limitation and energy consumption in PECM. The experimental results and discussion of the characteristics PECM are presented.

Go to article

Authors and Affiliations

J. Kozak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a proposal of using additional statistical parameters such as: standard deviation, variance, maximum and minimum increases of the observed value that were determined during measurements of temperature fields created on the surface of the tested electrochemical capacitor. The measurements were carried out using thermographic methods in order to support assessment of the condition of electrochemical capacitor under classic durability tests based on methods of determination of capacity and equivalent series resistance. The possibility of using some statistical parameters in assessment of the electrochemical capacitor quality was illustrated. The applied measurement methodology and the results of research associated with the classic methods of supercapacitors’ assessment are presented. The obtained results indicate that the variability of some statistical parameters of temperature fields can be directly related to changing the values of standard parameters describing electrochemical capacitor, which are capacitance and equivalent series resistance.

Go to article

Authors and Affiliations

Stanisław Galla
Arkadiusz Szewczyk
Łukasz Lentka
Download PDF Download RIS Download Bibtex

Abstract

The machining technology of electrochemical micromachining with ultra short voltage pulses (μPECM) is based on the already well-established fundamentals of common electrochemical manufacturing technologies. The enormous advantage of the highest manufacturing precision underlies the fact of the extremely small working gaps achievable through ultra short voltage pulses in nanosecond duration. This describes the main difference with common electrochemical technologies. With the theoretical resolution of 10 nm, this technology enables high precision manufacturing.

Go to article

Authors and Affiliations

Richard Zemann
Friedrich Bleicher
Reinhard Zisser-Pfeifer
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the corrosion behaviour of A356 (Al-7Si-0.3Mg) alloy in 3.5% NaCl solution has been evaluated using

cyclic/potentiodynamic polarization tests. The alloy was provided in the unmodified form and it was then modified with AlTi5B1 for grain

refinement and with AlSr15 for Si modifications. These modifications yield to better mechanical properties. Tensile tests were performed.

In addition, bifilm index and SDAS values were calculated and microstructure of the samples was investigated. As a result of the corrosion

test, the Ecorr values for all conditions were determined approximately equal, and the samples were pitted rapidly. The degassing of the

melt decreased the bifilm index (i.e. higher melt quality) and thereby the corrosion resistance was increased. The lowest corrosion rate was

founded at degassing and as-received condition (3.9x10-3 mm/year). However, additive elements do not show the effect which degassing

process shows.

Go to article

Authors and Affiliations

M. Uludağ
M. Kocabaş
D. Dışpınar
R. Çetin
N. Cansever
Download PDF Download RIS Download Bibtex

Abstract

In this study, the corrosion properties of Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloy were investigated as a function of the cold rolling ratio and annealing temperature. The annealing treatment was carried out at temperature of 680°C, 730°C, and 780°C. The highest corrosion potential observed in the specimen with a 10% rolling ratio was 179 mV, which was more positive than that of the non-rolled specimen (–0.214 Vssc). The lowest corrosion current density (1.30×10–8 A/cm2) was observed in the non-rolled specimen which suggested that the integrity of its passive oxide layer was superior to that of the cold-rolled specimens. Time-dependent EIS evaluation revealed that the consistency of the passive oxide layer was highly affected by the subjected rolling ratio over time.

Go to article

Authors and Affiliations

Hocheol Song
Ahmad Zakiyuddin
Sinhye Kim
Kwangmin Lee
Download PDF Download RIS Download Bibtex

Abstract

Generally, the metallic implants do not exhibit any bio-integration properties in contact with bone tissues. To improve the interfacial properties of metallic implants in contact with bone, the coatings with thin biocompatible films are used. Two methods to coating titanium implants with hydroxyapatite are described. The first is a two phase method, where by cathodic polarization is deposed a monetite film followed by an alkaline treatment when the monetite is converted to hydroxyapatite. The second method is a biomimetic deposition on an alkaline activate titanium surface, using a five time more concentrated simulated body fluid (5xSBF). After deposition this samples was drying at 120℃ and was sintered at 700℃ for three hours. Optical microscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray (EDX) were used to characterize structure, morphology and compositions of the deposed films. In this study, electrochemical deposition and biomimetic deposition of hydroxyapatite are compared.
Go to article

Authors and Affiliations

M.C. Perju
1 2 3
ORCID: ORCID
C. Nejneru
1
ORCID: ORCID
P. Vizureanu
1 2 3
ORCID: ORCID
A.A. Aelenei
1
ORCID: ORCID
A.V. Sandu
1 2 3
ORCID: ORCID
L. Sachelarie
4
ORCID: ORCID
M. Nabiałek
5
ORCID: ORCID

  1. "Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Prof. D. Mangeron Street, No. 41, 700050, Iasi, Romania
  2. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech ), Perlis, Malaysia
  3. Romanian Inventors Forum, Sf. P. Movila 3, Iasi, Romania
  4. Apollonia University of Iasi, Faculty of Dentistry, PACURARI STREET, NO. 11, 700511, Iasi, Romania
  5. Częstochowa University of Technology, Department of Physics , 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Now, the use of any medical device based on metals or alloys, especially intended for dentistry applications, is impossible without preclinical evaluation of its anticorrosion properties. Today, the use of stainless steels with AISI standardization, with predilection 316L and 321, are preferred for ergonomic reasons due to their high operational reliability and optimal mechanical properties for functionality over time. In this regard, 316L and 321 stainless steels are tested for comparison in the solution that simulates human saliva with different pH. Stainless steel samples were subjected to corrosion in Fusayama-Meyer and Carter-Brugirard saliva. In-situ electrochemical measurements were applied, such as the open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). The results show that the corrosion resistance of 316L is superior to 321 in saliva solution at both pH values.
Go to article

Authors and Affiliations

V. Neaga
1
L. Benea
1
ORCID: ORCID

  1. Competences Centre: Interfaces-Tribocorrosion and Electrochemical Systems (CC-ITES), Dunarea de Jos University of Galati, 47 Domneasca Street, RO-800008 Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

Ni625/WC composite coatings added with different amounts of Y 2O 3were prepared on the surface of 304 stainless steels by laser cladding. This study focused on the microstructure characteristics, microhardness, and corrosion performances of Ni625/WC composite coatings. The results showed that Y 2O 3 can effectively improve the corrosion resistance of the composite coatings. The microstructure from the bottom to the surface of composite coatings consists of plane crystal, cellular crystal, columnar crystal and equiaxed crystal. The Y 2O 3content of optimum composite coating was 1.0%. Its microhardness was three times that of matrix material. In addition, the corrosion current density of the composite coating was only 2% of Ni625/WC coating, which was attributed to the good properties of Y 2O 3 and appropriate Y 2O 3 refined microstructure.
Go to article

Authors and Affiliations

Jinling Yu
1
ORCID: ORCID
Zheng Zhentai
1
ORCID: ORCID
Shuai Li
1
ORCID: ORCID
Donghui Guo
1
ORCID: ORCID
Liang Chang
1
ORCID: ORCID

  1. Hebei University of Technology, School of Materials Science and Engineering, No. 5340, Xipingdao Road, Beichen District, Tianjin, 300401, PR China
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the effect of impeller shape on off-bottom particle suspension. On the basis of numerous suspension measurements, correlations are proposed for calculating the just-suspended impeller speed for a standard pitched four-blade turbine and three types of hydrofoil impellers produced by TECHMIX for several particle sizes and for a wide range of particle concentrations. The suspension efficiency of the tested impellers is compared with the efficiency of a standard pitched blade turbine on the basis of the power consumption required for off-bottom suspension of solid particles. It is shown that the standard pitched blade turbine needs highest power consumption, i.e. it exhibits less efficiency for particle suspension than hydrofoil impellers produced by TECHMIX.

Go to article

Authors and Affiliations

František Rieger
Tomáš Jirout
Dorin Ceres
Pavel Seichter
Download PDF Download RIS Download Bibtex

Abstract

Cast stainless steel of the Cr-Ni duplex type is used, among others, for the cast parts of pumps and valves handling various chemically

aggressive media. Therefore, the main problem discussed in this article is the problem of abrasion wear resistance in a mixture of SiC and

water and resistance to electrochemical corrosion in a 3% NaCl- H2O solution of selected cast steel grades, i.e. typical duplex cast steel,

high silicon and manganese duplex cast steel, and Cr-Ni austenitic cast steel (type AISI 316L). The study shows that the best abrasion

wear resistance comparable to Ni-Hart cast iron was obtained in the cast duplex steel, where Ni was partially replaced with Mn and N.

This cast steel was also characterized by the highest hardness and matrix microhardness among all the tested cast steel grades. The best

resistance to electrochemical corrosion in 3% NaCl- H2O solution showed the cast duplex steel with high content of Cr, Mo and N. The

addition of Ni plays rather insignificant role in the improvement of corrosion resistance of the materials tested.

Go to article

Authors and Affiliations

B. Kalandyk
R. Zapała
M. Starowicz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a voltammetric segmented voltage sweep mode that can be used to identify and measure heavy metals' concentrations. The proposed sweep mode covers a set of voltage ranges that are centered around the redox potentials of the metals that are under analysis. The heavy metal measurement system can take advantage of the historical database of measurements to identify the metals with higher concentrations in a given geographical area, and perform a segmented sweep around predefined voltage ranges or, alternatively, the system can perform a fast linear voltage sweep to identify the voltammetric current peaks and then perform a segmented voltage sweep around the set of voltages that are associated with the voltammetric current peaks. The paper also includes the presentation of two auto-calibration modes that can be used to improve system's reliability and proposes the usage of a Gaussian curve fitting of voltammetric data to identify heavy metals and to evaluate their concentrations. Several simulation and experimental results, that validate the theoretical expectations, are also presented in the paper.

Go to article

Authors and Affiliations

José Pereira
Octavian Postolache
Pedro Girão
Download PDF Download RIS Download Bibtex

Abstract

Point of present exploration was to figure out the anticorrosion activity of Acacia Cyanophylla (Saligna leaves) extract on the corrosion of mild steel in dilute sulfuric acid medium, using weight loss measurements and electrochemical impedance spectroscopy. The result of the study revealed that the extract act as a potent inhibitor on mild steel in acid medium. The increase in inhibitor concentration and immersion time showed a positive effect on inhibition efficiency. EIS exhibited one capacitive loop which indicates that the corrosion reaction is controlled by charge transfer process. The increase of phase shift (n) in presence of (ACLE) lower surface roughness. This change reveals the adsorption of the inhibitor compound on the steel surface. According to the results of weight loss measurements, the adsorption of the extract on the steel surface can be described by the Langmuir isotherm. The inhibition mechanism of (ACLE) molecules involves physical interaction between the inhibitor and metal surface. Additionally, Protective film formation against acid attack was confirmed by FT-IR and AFM techniques.
Go to article

Authors and Affiliations

M. Tezeghdenti
N. Etteyeb
L. Dhouibi
O. Kanoun
Download PDF Download RIS Download Bibtex

Abstract

Increasing of the efficiency of convective cooling of the inner surface of a short duct by changing its geometry was studied by the use of electrochemical limiting current technique (ELDCT). The duct consisted of seven identical, cylindrical segments. The changes of the duct geometry were obtained by mutual displacement of neighbouring segments, towards the radial direction. Mean values of the mass transfer coefficient for each segment and friction losses for the whole channel were measured for Reynolds numbers spanning the range 7700–35300 at the five values of displacement parameter. The results were used for estimation of cooling efficiency. Recommended values of displacement were determined to point the favourable conditions of heat/mass transfer in the duct. The results may be used, e.g. in the design of heat exchangers and channels for cooling of turbine blades and electronic equipment.

Go to article

Authors and Affiliations

Krzysztof Kiedrzyński
Download PDF Download RIS Download Bibtex

Abstract

Contamination by pesticides is known to be one of the major issues that are enormously degrading the quality of food and fodder crops together with increased agricultural, environmental and aquatic pollution. Many analytical and laboratory methods are available for detection of these pesticides in products in order to maintain food security but these methods are not readily accessible to most people including farmers for on-site and onfield detection in the crops. The development of more convenient, fast, and cost-effective methods that can be easily accessed by laymen based on simple paper strips or mobile analyzers etc. are need of the time. This review includes a brief discussion about novel devices which have been introduced in the field for pesticide detection viz. easy to use colorimetric and non-colorimetric detection methods based on various electrochemical and optical sensing strategies. These techniques exhibited promising results in field of on-site pesticide detection owing to their easy production, high sensitivity and readily accessible results obtained with these portable devices. This review further describes emerging prospects, deficits and challenges associated with the application of the aforementioned sensing devices.
Go to article

Authors and Affiliations

Khushbu Gumber
1

  1. Chandigarh University, Gharuan, Mohali, Punjab, India
Download PDF Download RIS Download Bibtex

Abstract

The most common means to analyze redox gradients in sediments is by push/pulling electrochemical probes through sediment’ strata while repeating measurements. Yet, as electrodes move up and down they disrupt the texture of the sediment layers thus biasing subsequent measurements. This makes it difficult to obtain reproducible measurements or to study the evolution of electrochemical gradients. One solution for solving this problem is to eliminate actuators and electrode movements altogether, while instead deploying probes with numerous electrodes positioned at various depths in the sediment. This mode of operation requires electrode switching. We discuss an electrode-switching solution for multi-electrode probes, based on Complementary Metal-Oxide-Semiconductor (CMOS) multiplexors. In this solution, electrodes can be individually activated in any order, sequence or time frame through digital software commands. We discuss constraints of CMOS-based multilayer electrochemical probes during cyclic voltammetry.
Go to article

Authors and Affiliations

V.M. Cimpoiasu
1
ORCID: ORCID
F. Radulescu
2
K.H. Nealson
3
ORCID: ORCID
I.C. Moga
4
ORCID: ORCID
R. Popa
4
ORCID: ORCID

  1. University of Craiova, Frontier Biology and Astrobiology Research Center, Biology and Environmental Engineering Department, Craiova, 200585, Romania
  2. Portland, OR, 97229
  3. University of Southern California, Department of Biological Sciences, 3616, Trousdale Parkway, Los Angeles, 90089, USA
  4. DFR Systems SRL, R&D Department, Bucharest, Romania
Download PDF Download RIS Download Bibtex

Abstract

In this paper there are presented some results obtained by open circuit potential and electrochemical impedance spectroscopy measurements from studies performed on the behavior of tribocorrosion on metallic implant biomaterials as: 304L stainless steel, Co/nano-CeO2 nanocomposite layer and Ti6Al4V untreated and oxidized alloy to form a nanoporous TiO2 film. The open circuit potential technique used in measuring the tribocorrosion process provide information on the active or passive behavior of the investigated metallic biomaterial in the biological fluid, before, during friction and after stopping the friction. Thus it clearly show a better behavior of Co/nano-CeO2 nanocomposite coatings as compared with 304L stainless steel to tribocorrosion degradation in Hank solution; as well the better behavior of nanoporous TiO2 film formed annodically on Ti6Al4V alloy surface as compared with untreated alloy to tribocorrosion degradation in artificial saliva Fusayama Meyer. The slight decrease in polarization resistance value resulted from electrochemical impedance spectroscopy measured during friction in the case of the Co/nano-CeO2 nanocomposite layer (four times smaller), compared to 304L stainless steel, whose polarization resistance decreased more than 1000 times during friction shows the higher sensitivity of stainless steel to degradation by tribocorrosion. The same behavior is observed when comparing the polarization resistance of untreated titanium alloy recorded during friction that is about 200 hundred times smaller, while the specific polarization resistance of the oxidized alloy with the nanoporous film of titanium oxide, decreases very little during friction, highlighting the beneficial effect of modifying the titanium alloy by anodic oxidation to increase its resistance to the degradation process by tribocorrosion.
Go to article

Authors and Affiliations

L. Benea
1
ORCID: ORCID

  1. Dunarea de Jos University of Galati, Competences Centre: Interfaces-Tribocorrosion and Electrochemical Systems (CC-ITES), 47 Domneasca Street, RO-800008 Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to study the corrosion behavior of Nickel – Base – Dental Alloys in Ringer biological fluid. The Nickel base alloys are widely used for medical purposes, especially for prosthetic works in the field of dentistry. The applied electrochemical methods used for corrosion investigations are Open Circuit Potential, Linear Polarization during time of immersion in order to calculate the polarization resistance and corrosion rate. Potentiodynamic Polarization diagrams was performed to appreciate the passive domain. Ni-Cr Ugirex alloy show a better corrosion resistance in Ringer solution which will be reflected in a longer life of the dental structures made with this alloy as compared to the Ni-Cr Ducinox alloy, which will result in dental structures with a shorter lifespan.
The electrochemical studies has shown that the alloy have a corrosion behavior similar to a passivating alloy, displaying an extensive passivity area due to formation of an oxide film.
Go to article

Authors and Affiliations

L. Benea
1
ORCID: ORCID
L. Dragus
1 2
D. Mocanu
1

  1. Dunarea de Jos University of Galati, Competences Centre: Interfaces-Tribocorrosion and Electrochemical Systems (CC-ITES), 47 Domneasca Street, RO-800008 Galati, Romania
  2. Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, 35 Alexandru. I. Cuza Street., RO-800010, Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

The corrosion inhibition behaviour of 1-Ethyl-3-methylimidazolium-methanesulphonate (EMIM[MS]) and 1-Ethyl-3-methylimidazolium acetate (EMIM[Ac]) on API 5L X-52 carbon steel in 2 M HCl was investigated using weight loss, potentiodynamic polarization and electrochemical impedance methods. The corrosion rates of carbon steel decreased in the presence of these ionic liquids. The inhibition efficiencies of the compounds increased with concentration and showed a marginal decrease with a 10°C increase in temperature. Polarization studies showed the compounds to be mixed type inhibitors with stronger anodic character. The adsorption mechanism of both compounds on the metal surface was via physical adsorption and the process obeyed the El-Awardy kinetic-thermodynamic model. The associated activation energy of corrosion and other thermodynamic parameters were calculated to elaborate on the thermodynamics and mechanism of the corrosion inhibition process. EMIM[MS] was found to inhibit the corrosion of carbon steel better than EMIM[Ac] and is attributed to the presence of the highly electronegative sulphur atom in its structure and its larger molecular size.

Go to article

Authors and Affiliations

Magdalene Edet Ikpi
Okama Ebri Obono
Download PDF Download RIS Download Bibtex

Abstract

Nifedipine, a pyridine derivative was investigated as corrosion inhibitor for API 5L X-52 steel in 2 M HCl solution by potentiodynamic polarization, electrochemical impedance spectroscopy and quantum chemical calculations. Statistical tools were used to compare results of the experimental methods. The results showed that nifedipine is capable of inhibiting the corrosion of API 5L X-52 steel in 2 M HCl solution. Potentiodynamic polarization results reveal that nifedipine functions as a mixed-type inhibitor and presents an inhibition efficiency of about 78% at 500 ppm. Impedance data reveal an increasing charge transfer resistance with increasing inhibitor concentration and also shows comparable inhibition efficiency of about 89-94% at 500 ppm. Thermodynamic parameters imply that nifedipine is adsorbed on the steel surface by a physiochemical process and obeys Langmuir adsorption isotherm. The calculated molecular properties namely the highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy, chemical hardness, energy gap, dipole moment, electronegativity and global nucleophilicity index all show a positive relationship to the observed corrosion inhibition efficiency.

Go to article

Authors and Affiliations

Magdalene Edet Ikpi
Fidelis Ebunta Abeng
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a method of synthesizing copper powders by electrochemical method with the use of a rotating working electrode. The influence of the rotation speed of the working electrode, the current density, the concentration of copper ions, and the addition of ethylene glycol on the shape, size, and size distribution of the obtained powders were investigated. Properties of the synthesized powders were characterized by scanning electron microscopy (SEM) and X-ray powder diffractometry (XRD). It has been shown that it is possible to obtain copper powders with a size of 1 µm by an electrochemical method using the rotary cathode, in sulphate bath with addition of ethylene glycol as a surfactant. Increasing current density causes a decrease in the average size of the obtained powder particles. The addition of 2.5% of ethylene glycol prevents the formation of dendritic powders. The change in the concentration of copper ions in the range from 0.01 to 0.15 mol/dm3 in the electrolyte did not show any significant effect on the size of obtained particles. However, higher concentrations of copper limiting the presence of dendritic-shape particles. Changing the speed of rotation of the electrode affects both the size and the shape of synthesized copper powder. For the rotational speed of the electrode of 115 rpm, the obtained powders have a size distribution in the range of 0-3 µm and an average particle size of 1 µm. The particles had a polygonal shape with an agglomeration tendency.
Go to article

Authors and Affiliations

K. Wojtaszek
1
F. Cebula
1
B. Partyka
1
P. Deszcz
1
G. Włoch
1
R.P. Socha
2
K. Woźny
2
P. Żabiński
1
ORCID: ORCID
M. Wojnicki
1 2

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. CBRTP SA Research and Development Center of Technology for Industry, Ludwika Waryńskiego 3A, 00-645 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

A problem is defined to investigate the effect of titanium traces on the corrosion behaviour of low carbon steel. In theory titanium effects surface properties like abrasion resistance in medium carbon steels and corrosion resistance in low as well as medium carbon steels. The present research as indicated by the topic is aimed to experimentally mark the effect of titanium traces on corrosion resistance in the available low carbon steel specimens.
The effect of microalloying with titanium (i.e.0.02wt.%) on the corrosion behavior of low carbon steel in a 3.5 wt.% NaCl solution was studied by electrochemical, SEM, and Raman spectroscopy techniques. The electrochemical results showed that the corrosion of the Ti-bearing steel improved by around 30% compared with the Ti-free steel. The titanium microalloying led to the formation of a more compact corrosion product layer on the metal surface. The SEM analysis showed that the Ti-bearing sample had a smoother surface compared with the Ti-free steel.
Go to article

Bibliography

[1] Yu, C., Wang, H., Gao, X. & Wang, H. (2020). Effect of Ti Microalloying on the Corrosion Behavior of Low-Carbon Steel in H2S/CO2 Environment. Journal of Materials Engineering and Performance. 29(9), 6118-6129. DOI: 10.1007/s11665-020-05077-1.
[2] Liu, Z., Gao, X., Du, L., Li, J., Zheng, C. & Wang, X. (2018). Corrosion mechanism of low-alloy steel used for flexible pipe in vapor-saturated H2S/CO2 and H2S/CO2-saturated brine conditions. Materials and Corrosion 69(9), 1180-1195. DOI: 10.1002/maco.201810047.
[3] Palumbo, G., Banaś, J., Bałkowiec, A., Mizera, J. & Lelek-Borkowska, U. (2014). Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid. J. Solid State Electrochem. 18(11), 2933-2945. DOI: 10.1007/s10008-014-2430-2.
[4] Liu, Z.-G., Gao, X.-H., Du, L.-X., Li, J.-P., Li, P. & Misra, R.D.K. (2017). Comparison of corrosion behaviors of low-alloy steel exposed to vapor-saturated H2S/CO2 and H2S/CO2-saturated brine environments. Materials and Corrosion 68(5), 566-579. https://doi.org/10.1002/maco.201609165.
[5] Rozenfeld, I.L. (1981). Corrosion Inhibitors. New York: McGraw-Hill.
[6] Palumbo, G., Kollbek, K., Wirecka, R., Bernasik, A. & Górny, M. (2020). Effect of CO2 partial pressure on the corrosion inhibition of N80 carbon steel by gum arabic in a CO2-water saline environment for shale oil and gas industry. Materials. 13(19), 4245, 1-24. https://doi.org/10.3390/ma13194245.
[7] Bai, H., Wang, Y., Ma, Y., Zhang, Q., Zhang, N. (2018). Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture. Materials. 11(9), 1765, 1-15. DOI: 10.3390/ma11091765.
[8] Cui, L., Kang, W., You, H., Cheng, J., & Li, Z. (2021). Experimental study on corrosion of J55 casing steel and N80 tubing steel in high pressure and high temperature solution containing CO2 and NaCl. Journal of Bio- and Tribo-Corrosion. 7(1), 13, 1-14. DOI: 10.1007/s40735-020-00449-5.
[9] Islam, M.A., & Farhat, Z.N. (2015). Characterization of the corrosion layer on pipeline steel in sweet environment. Journal of Materials Engineering and Performance. 24(8), 3142-3158. DOI: 10.1007/s11665-015-1564-4.
[10] Zhang, T., Liu, W., Yin, Z., Dong, B., Zhao, Y., Fan, Y., Wu, J., Zhang, Z. & Li, X. (2020). Effects of the addition of Cu and Ni on the corrosion behavior of weathering steels in corrosive industrial environments. Journal of Materials Engineering and Performance. 29(4), 2531-2541. DOI: 10.1007/s11665-020-04738-5.
[11] Weng, L., Du, L. & Wu, H. (2018). Corrosion behaviour of weathering steel with high-content titanium exposed to simulated marine environment. International Journal of Electrochemical Science. 13(6), 5888-5903. DOI: 10.20964/2018.06.61.
[12] Marcus, P. (1994). On some fundamental factors in the effect of alloying elements on passivation of alloys. Corrosion Science. 36(12), 2155-2158. https://doi.org/10.1016/0010-938X(94)90013-2.
[13] Liu, Z., Gao, X., Du, L., Li, J., Li, P. (2016). Corrosion Behaviour of Low-Alloy Steel with Titanium Addition Exposed to Seawater Environment. International Journal Electrochemical Science. 11(8), 6540-6551. DOI: 10.20964/2016.08.25.
[14] Banas, J., Lelek-Borkowska, U., Mazurkiewicz, B. & Solarski, W. (2007). Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water. Electrochim. Acta 52(18), 5704-5714. DOI: 10.1016/j.electacta.2007.01.086.
[15] Palumbo, G., Dunikowski, D., Wirecka, R., Mazur, T., Lelek-Borkowska, U., Wawer, K. & Banaś, J. (2021). Effect of Grain Size on the Corrosion Behavior of Fe-3wt.%Si-1wt.%Al Electrical Steels in Pure Water Saturated with CO2. Materials. 14(17), 5084, 1-19. https://doi.org/10.3390/ma14175084.
[16] Święch, D., Palumbo, G., Piergies, N., Pięta, E., Szkudlarek, A. & Paluszkiewicz, C. (2021). Spectroscopic investigations of 316L stainless steel under simulated inflammatory conditions for implant applications: the effect of tryptophan as corrosion inhibitor/hydrophobicity marker. Coatings. 11(9), 1097. https://doi.org/10.3390/coatings11091097.
[17] Święch, D., Paluszkiewicz, C., Piergies, N., Pięta, E., Kollbek, K. & Kwiatek, W.M. (2020). Micro- and nanoscale spectroscopic investigations of threonine influence on the corrosion process of the modified Fe surface by Cu nanoparticles. Materials. 13(20), 4482, 1-16. https://doi.org/10.3390/ma13204482.
[18] Chen, Z. & Yan, K. (2020). Grain refinement of commercially pure aluminum with addition of Ti and Zr elements based on crystallography orientation. Scientific Reports. 10(1), 16591, 1-8. https://doi.org/10.1038/s41598-020-73799-2.
[19] Kalisz, D. & Żak, P.L. (2015). Modeling of solute segregation and the formation of non-metallic inclusions during solidification of a titanium-containing steel. Kovove Materialy. 53(1), 35-41. DOI: 10.4149/km_2015_1_35.
[20] Podorska, D., Drozdz, P., Falkus, J. & Wypartowicz, J. (2006). Calculations of oxide inclusions composition in the steel deoxidized with Mn, Si and Ti. Archives of Metallurgy and Materials. 51(4), 581-586. ISSN: 1733-3490.
[21] Zhang, M., Li, M., Wang, S., Chi, J., Ren, L., Fang, M. & Zhou, C. (2020). Enhanced wear resistance and new insight into microstructure evolution of in-situ (Ti,Nb)C reinforced 316 L stainless steel matrix prepared via laser cladding. Optics and Lasers in Engineering. 128, 106043, 1-10. DOI: 10.1016/j.optlaseng.2020.106043.
[22] Sadeghpour, S., Kermanpur, A. & Najafizadeh, A. (2013). Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment. Materials Science and Engineering: A. 584, 177-183. DOI: 10.1016/j.msea.2013.07.014.
[23] Zhang, L.M., Ma, A.L., Hu, H.X.; Zheng, Y.G., Yang, B.J. & Wang, J.Q. (2017). Effect of microalloying with Ti or Cr on the corrosion behavior of Al-Ni-Y amorphous alloys. Corrosion. 74(1), 66-74. https://doi.org/10.5006/2451.
[24] Mustafa, A.H., Ari-Wahjoedi, B. & Ismail, M.C. (2013). Inhibition of CO2 corrosion of X52 steel by imidazoline-based inhibitor in high pressure CO2-water environment. Journal of Materials Engineering and Performance. 22(6), 1748-1755. DOI: 10.1007/s11665-012-0443-5.
[25] Nie, X.P., Yang, X.H. & Jiang, J.Z. (2009) Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses. Journal of Alloys Compounds. 481(1), 498-502. DOI: 10.1016/j.jallcom.2009.03.022.
[26] Palumbo, G., Górny, M. & Banaś, J. (2019). Corrosion inhibition of pipeline carbon steel (N80) in CO2-saturated chloride (0.5 M of KCl) solution using gum arabic as a possible environmentally friendly corrosion inhibitor for shale gas industry. Journal of Materials Engineering and Performance. 28(10), 6458-6470. https://doi.org/10.1007/s11665-019-04379-3.
[27] Heuer, J.K. & Stubbins, J.F. (1999). An XPS characterization of FeCO3 films from CO2 corrosion. Corros. Sci. 41(7), 1231-1243. https://doi.org/10.1016/S0010-938X(98)00180-2.
[28] Mora-Mendoza, J.L., Turgoose, S. (2002) Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions. Corrosion Science. 44(6), 1223-1246. DOI: 10.1016/S0010-938X(01)00141-X.
[29] Criado, M., Martínez-Ramirez, S. & Bastidas, J.M. (2015). A Raman spectroscopy study of steel corrosion products in activated fly ash mortar containing chlorides. Construction and Building Materials. 96, 383-390. http://dx.doi.org/10.1016/j.conbuildmat.2015.08.034.
[30] Zhang, X., Xiao, K., Dong, C., Wu, J., Li, X. & Huang, Y. (2011). In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42. Engineering Failure Analysis. 18(8), 1981-1989. DOI: 10.1016/j.engfailanal.2011.03.007.
[31] Święch, D., Paluszkiewicz, C., Piergies, N., Lelek-Borkowska, U. & Kwiatek, W.M. (2018). Identification of corrosion products on Fe and Cu metals using spectroscopic methods. Acta Physica Polonica Series A. 133(4), 286-288. DOI: 10.12693/APhysPolA.133.286.

Go to article

Authors and Affiliations

Ali R. Sheikh
1
ORCID: ORCID

  1. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Humic substances (HS) are hydrophobic parts of dissolved organic matter, which are hard to degrade using biological processes. When exposed to disinfection processes, the HS present in wastewater could lead to the formation of disinfection by-products (DBPs), which are harmful and dangerous to health. Thus, a chemical coagulation process is commonly used for HS removal. This work used a cylindrical galvanic cell (CGC) with an iron anode and a copper cathode, where the dissolution of the anode served as an alternative source of metal ions for HS coagulation. The galvanic cell current for CGC stabilized at around 0.6 mA, and the voltage fluctuated, ca. 0.5 V for all solutions. The peaks observed on cyclic voltammograms could be associated only with oxidation and dissolution of iron; no other process was identified. After the process, the structures and molecular composition of the anode surface suggest the loss of Fe mass and the formation of iron oxides due to corrosion. The initial pH of the tested solution influenced the total Fe concentration in the solution as well as colour and turbidity. The quantitative removal of HS by electrolysis and membrane filtration processes at initial pHi = 6.0 yielded 72% and 90%, respectively, after 6 and 10 min. The mechanism of sorption on the flocs of hydroxides as a primary factor in HA removal was suggested.
Go to article

Authors and Affiliations

Bartosz Libecki
1
ORCID: ORCID
Tomasz Mikołajczyk
1
ORCID: ORCID
Bogusław Pierożyński
1
ORCID: ORCID
Mateusz Kuczyński
1
ORCID: ORCID

  1. University of Warmia and Mazury in Olsztyn, Faculty of Agriculture and Forestry, Departmentof Chemistry, Łódzki Square 4, 10-727 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents the research results on impact of the method of polycrystalline graphene layers separation from the growth substrate on the obtained carbon material quality. The studies were carried out on graphene sheets obtained by metallurgical method on a liquid metal substrate (HSMG® graphene). The graphene was separated using chemical etching method or the electrochemical delamination method, by separating by means of electrolysis. During electrolysis, hydrogen is emitted on a graphene-covered of cathode (metal growth substrate) as a result of the voltage applied. The graphene layer breaks away from metallic substrate by gas accumulation between them. The results from these separation processes were evaluated by means of different tools, such as SEM, TEM and AFM microscopy as well as Raman Spectroscopy. In summary, the majority of analyses indicate that the graphene obtained as a result of hydrogen delamination possesses higher purity, smaller size and number of defects, its surface is smooth and less developed after the transfer process to the target substrate.

Go to article

Authors and Affiliations

K. Dybowski
G. Romaniak
P. Kula
A. Jeziorna
P. Kowalczyk
R. Atraszkiewicz
Ł. Kołodziejczyk
D. Nowak
P. Zawadzki
M. Kucińska

This page uses 'cookies'. Learn more