Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present the general governing equations of electrodynamics and continuum mechanics that need to be considered while mathematically modelling the behaviour of electromagnetic acoustic transducers (EMATs). We consider the existence of finite deformations for soft materials and the possibility of electric currents, temperature gradients, and internal heat generation due to dissipation. Starting with Maxwell’s equations of electromagnetism and balance laws of nonlinear elasticity, we present the governing equations and boundary conditions in incremental form in order to solve wave propagation problems of boundary value type.

Go to article

Authors and Affiliations

Prashant Saxena
Download PDF Download RIS Download Bibtex

Abstract

The distortion of air gap magnetic field caused by the rotor eccentricity contributes to the electromechanical coupling vibration of the brushless DC (BLDC) permanent magnet in-wheel motor (PMIWM) in electric vehicles (EV). The comfort of the BLDC in-wheel motor drive (IWMD) EV is seriously affected. To deeply investigate the electromechanical coupling vibration of the PMIWM under air gap eccentricity, the PMIWM, tyre and road excitation are analyzed first. The influence of air gap eccentricity on air gap magnetic density is investigated. The coupling law of the air gap and the unbalanced magnetic force (UMF) is studied. The coupling characteristics of eccentricity rate, air gap magnetic density, UMF, phase current and vibration acceleration are verified on the test bench in the laboratory. The mechanism of the electromechanical coupling vibration of the BLDC PMIWM under air gap static eccentricity (SE), dynamic eccentricity (DE) and hybrid eccentricity (HE) is revealed. DE and HE deteriorate the vibration acceleration amplitude, which contributes the electromechanical coupling vibration of the PMIWM. The research results provide a solid foundation for the vibration and noise suppression of the PMIWM in distributed drive EV.

Go to article

Authors and Affiliations

Y. Li
H. Wu
X. Xu
Y. Cai
X. Sun

This page uses 'cookies'. Learn more