Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper elucidated the potential of electron backscatter diffraction analysis for ground granulated blast furnace slag geopolymers at 1000°C heating temperature. The specimen was prepared through the mechanical ground with sandpaper and diamond pad before polished with diamond suspension. By using advanced technique electron backscatter diffraction, the microstructure analysis and elemental distribution were mapped. The details on the crystalline minerals, including gehlenite, mayenite, tobermorite and calcite were easily traced. Moreover, the experimental Kikuchi diffraction patterns were utilized to generate a self-consistent reference for the electron backscatter diffraction pattern matching. From the electron backscatter diffraction, the locally varying crystal orientation in slag geopolymers sample of monoclinic crystal observed in hedenbergite, orthorhombic crystal in tobermorite and hexagonal crystal in calcite at 1000°C heating temperature.
Go to article

Authors and Affiliations

Ikmal Hakem Aziz
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
2
ORCID: ORCID
Mohd Arif Anuar Mohd Salleh
2
ORCID: ORCID
Sorachon Yoriya
3
ORCID: ORCID
Rafiza Abd Razak
4
ORCID: ORCID
Rosnita Mohamed
1
ORCID: ORCID
Madalina Simona Baltatu
5
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  3. National Metal and Material Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114, Thailand Science Park, Pahonyothin Rd., Khlong 1, Khlong Luang, Pathum Thani 12120, Thailand
  4. Department of Civil Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02100 Padang Besar, Perlis, Malaysia
  5. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, 700050, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

Analysis of a crystallographic texture (a preferred orientation) effect on cavitation wear resistance of the as-cast CuZn10 alloy, has been conducted in the present paper. The experiment was conducted on the CuZn10 alloy samples with <101>//ND or <111>//ND preferred orientations (where the ND denotes direction that is perpendicular to the exposed surface). The cavitation resistance examinations have been carried out on three different laboratory stands (namely, vibration, jet-impact and flow stands) that are characterized by a various intensity and a way of cavitation’s excitement. Obtained results point towards a higher cavitation resistance of the CuZn10 alloy with the <111> // ND preferred orientation.
Go to article

Authors and Affiliations

W. Polkowski
R. Jasionowski
D. Zasada
Download PDF Download RIS Download Bibtex

Abstract

To investigate the solid state weldability on SUS316L alloy, this work was carried out. Friction welding as a solid state welding was introduced and conducted at a rotation speed of 2,000 rpm and a friction pressure of 25 MPa on tube typed specimens. After this work, the grain boundary characteristic distributions such a grain size, shape and misorientation angle of the welds were clarified by electron backscattering diffraction method. The application of friction welding on SUS316L resulted in a significant refinement of the grain size in the weld zone (6.03 μm) compared to that of the base material (57.55 μm). Despite the grain refinement, the mechanical properties of the welds indicate relatively low or similar to the base material. These mechanical properties are due to dislocation density in the initial material and grain refinement in the welds.
Go to article

Authors and Affiliations

Youngkyu Kim
1
ORCID: ORCID
Kukhyun Song
1
ORCID: ORCID

  1. S-WELDS Inc., 27, Eonjang 1-gil, Samcheok-si, Gangwon-do 25913, Republic of Korea

This page uses 'cookies'. Learn more