Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Single crystalline cesium doped ZnO nanorods with homogeneous size and shape were grown hydrothermally on ITO substrates that are presented in our previous work. According to the previous work, XRD analysis showed that cesium doped ZnO nanorods are wurtzite single crystals and are grown preferentially along the c-axis. Also, the electrical conductivity of doped ZnO showed higher values for the 1% cesium, which confirmed incorporation of the cesium dopant. Cesium doped ZnO nanorods are suitable candidates for applications in solar cells. So, in this research, we employed cesium doped ZnO nanorods with the different dopant concentration in inverted polymer solar cell. By comparing the effect of doped ZnO nanorods with diverse dopant concentration (0, 0.5, 1.0, 1.5 and 2%) on the performance of devices, 1.0% cesium doped ZnO was found as the most effective doping level among the selected doping concentrations. Also, using 1.0% cesium doped ZnO nanorods, Jsc of 8.21 mA/cm², Voc of 0.541V and Fill Factor of 63.01% were achieved, which led to power conversion efficiency of 2.80%.

Go to article

Authors and Affiliations

M. Ahmadi
S. Rashidi Dafeh
S. Ghazanfarpour
M. Khanzadeh
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to evaluate the use of the naphthalic anhydride safener on the protection of common bean cultivars BRS-Estilo (carioca) and BRS-Esplendor (black) from negative effects of herbicides. Two experiments were conducted, one for each cultivar in a complete randomized design with five replications, in a 6 × 3 factorial scheme, with six herbicide treatments: bentazon, fluazifop-P + fomesafen, bentazon + imazamox, fomesafen, cloransulam, and control without application, and three naphthalic anhydride treatments: without application, foliar application, and application via seed treatment. Visible injuries at 7, 14 and 21 days after application, photosystem II electron transport rate, and plant dry weight were evaluated. The naphthalic anhydride applied via foliar, and seed treatment reduced significantly the visible injuries in relation to the control when using the herbicides bentazon, fluazifop-P + fomesafen, bentazon + imazamox, and cloransulam. The photosystem II electron transport rate was protected by anhydride applied via foliar and seed treatment when using the herbicides bentazon, fluazifop-P + fomesafen and bentazon + + imazamox. The application of naphthalic anhydride via seed treatment protected the BRS-Estilo and BRS-Esplendor common bean cultivars, with no reductions in the plant dry weight when using the herbicides fluazifop-P + fomesafen, and fomesafen. The use of naphthalic anhydride via seed treatment and foliar application protected BRS-Estilo and BRSEsplendor common bean cultivars, from the negative effects of fluazifop-P + fomesafen and fomesafen herbicides. Thus, this practice has potential to be used in common beans.

Go to article

Authors and Affiliations

Fábio Henrique Krenchinski
Edicarlos Batista de Castro
Victor José Salomão Cesco
Diego Belapart
Danilo Morilha Rodrigues
Caio Antonio Carbonari
Edivaldo Domingues Velini

This page uses 'cookies'. Learn more