Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Strength and permeability properties along with microstructural evolution of hardened slurries composed of fly ash from fluidal bed combustion of brown coal and an addition of OPC/BFSC is assessed in this paper. An increase in the amount of fly ash in slurries influences the development of mechanical strength and a decrease of hydraulic conductivity. SEM, XRD, and porosity analyses confirmed formation of watertight microstructures. The structure of slurries is composed of ettringite, C-S-H phase, AFt, and AFm phases. Ettringite crystallises as relatively short needles forming compact clusters or intermixed with the C-S-H phase. The occurring C-S-H phases are mainly of type I – fibrous and type II – honeycomb

Go to article

Authors and Affiliations

Z. Kledyński
P. Falaciński
A. Machowska
J. Dyczek
Ł. Kotwica
Download PDF Download RIS Download Bibtex

Abstract

A multi-laminate constitutive model for soft soils incorporating structural anisotropy is presented. Stress induced anisotropy of strength, which is present in multi-laminate type constitutive models, is augmented by directionally distributed overconsolidation. The model is presented in theelastic-plastic version in order to simulate strength anisotropy of soft clayey soils and destructuration effects. Performance of the model is shown for some element tests and for the numericalsimulation of a trial road embankment constructed on soft clays at Haarajoki, Finland. The numerical calculations are completed with the commercial finite element code capable to performcoupled static/consolidation analysis of soils. Problems related to the initiation of in situ stress state, conditions of preconsolidation, as well as difficulties linked to estimation of the model parametersare discussed. Despite simple assumptions concerning field conditions and non-viscous formulationof the constitutive model, the obtained final results are of a sufficient accuracy for geotechnical practice.

Go to article

Authors and Affiliations

M. Cudny
Download PDF Download RIS Download Bibtex

Abstract

Failures that occurred in the last few decades highlighted the need to raise awareness about the emergent risk related to the impact localised degradation phenomena have on embankments. Common interventions aimed to improve embankments, such as the reconstruction of the damaged area or the injection of low-pressure grouts to fill fractures and burrows, may cause the weakening of the structure due to discontinuities between natural and treated zones. Moreover, since such repair techniques require huge volumes of materials, more sustainable solutions are encouraged. At the same time, the textile and fashion industries are looking for sustainable waste management and disposal strategies to face environmental problems concerned with the voluminous textile waste dispatched to landfills or incinerators. The use of soil mixed with textile waste in embankment improvement has been investigated to identify an effective engineering practice and to provide a strategy for the circular economy of textiles. Preliminary laboratory tests have been conducted on soil specimens collected from the Secchia River embankment, Northern Italy, to define the appropriate mixture proportions and to compare physical properties and hydro-mechanical behaviour of natural and treated soils. The results show that an appropriate fibre content offers manageable and relatively homogeneous mixtures. The indluence on soil consistency is mainly due to the textile fibre hydrophilic nature. The addition of fibres reduces the maximum dry density and increases the optimum water content. At low stress levels, the compressibility and hydraulic conductivity appear higher, however macro voids produced during sample preparation may alter the findings.
Go to article

Authors and Affiliations

Chiara Rossignoli
1
ORCID: ORCID
Marco Caruso
2
ORCID: ORCID
Cristina Jommi
1 3
ORCID: ORCID
Donatella Sterpi
1
ORCID: ORCID

  1. Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci, 32, Milan, Italy
  2. Politecnico di Milano, Testing Lab for Materials, Buildings and Civil Structures, Milan, Italy
  3. Delft University of Technology, Faculty of Civil Engineering and Geosciences, Delft, The Netherlands
Download PDF Download RIS Download Bibtex

Abstract

Drilled displacement columns, constructed in the form of unreinforced or reinforced concrete elements, are currently a very commonly used method of improving soft subsoil, creating an alternative to more expensive pile foundations. A frequently used solution for improving soft soils of road or railway embankments is to design a regular pattern of columns of relatively small diameter. Columns along the perimeter of the improved area are reinforced with rigid steel profiles, while the internal ones are made as concrete elements. Column heads are usually covered with a load transfer platform (layer of compacted granular fill) which is additionally reinforced with geosynthetics.
The application of soil improvement with displacement columns is not always successful. It is due to the errors and shortcomings occurring at the design stage, including simplifications in modelling, to construction faults, which may include insufficient experience of contractors and/or improper supervision.
Referring to the real object that failed, the article provides the results of numerical parametric analyses taking into account the influence of the key design parameters such as: the stiffness of the load transfer layers, the amount and stiffness of the geosynthetic reinforcement as well as the column spacing. The article presents comparisons of numerical results obtained with the finite element analyses for various approaches to geometry modelling (axisymmetric, 2D and 3D). The simulations indicate that the use of the axisymmetric model of a single column in routine design may lead to the deformations exceeding the serviceability limit states.
Go to article

Authors and Affiliations

Waldemar Szajna
1
ORCID: ORCID
Liudmyla Bondareva
2
ORCID: ORCID
Bartosz Szatanik
3
ORCID: ORCID

  1. University of Zielona Góra, Institute of Civil Engineering, Prof. Zygmunta Szafrana 1 Street, 65-516 Zielona Góra, Poland and TPA – Technical Research Institute, Parzniewska 8 Street, 05-800 Pruszków, Poland
  2. Kyiv National University of Construction and Architecture, 31 Povitroflotski avenue, 03037, Kyiv, Ukraine and TPA – Technical Research Institute, Parzniewska 8 Street, 05-800 Pruszków, Poland
  3. TPA – Technical Research Institute, Parzniewska 8 Street, 05-800 Pruszków, Poland and MSc., Eng., TPA – Technical Research Institute, Parzniewska 8 Street, 05-800 Pruszków, Poland
Download PDF Download RIS Download Bibtex

Abstract

There are 40 coal mines in Poland now. One of them (coal mine “Bogdanka”) is situated in Lublin Coal Basin, other are localised in Silesia and Małopolska regions. Coal mining is a source of large amounts of wastes. Mean annual production of wastes in only Lublin Coal Basin exceeds 2 million Mg, 65% of which is disposed on a heap. The rest is used to restore opencast excavations, to construct and repair local roads and to produce building materials. It seems that large amount of these wastes could be used to construct or modernize flood embankments and dykes. Using mine wastes as building materials requires the knowledge of their geotechnical parameters. A characteristic feature of mine wastes is their gradual weathering which affects geotechnical parameters largely determined by their mineral and petrographic composition.

This paper describes analyses of geotechnical parameters of mine wastes from Lublin Coal Basin (heap near coal mine “Bogdanka”) of various storage times and of samples collected after 10 years of exploitation of a dyke between ponds made of these wastes at the break of 1993 and 1994. Detailed analyses involved: grain size distribution, natural and optimum moisture content, maximum dry den-sity, shear strength and coefficient of permeability. Obtained results were compared with literature data pertaining to mine wastes from Upper Silesian Coal Basin and from other European coal basins.

Performed studies showed that coal mining wastes produced in Lublin Coal Basin significantly differed in the grain size distribution from wastes originating from Upper Silesian Coal Basin and that weathering proceeded in a different way in wastes produced in both sites.

Go to article

Authors and Affiliations

Piotr Filipowicz
Magdalena Borys
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the influence of the load on the water accumulation embankment crown on changes in the course of the filtration curve in its body. The study was carried out with a medium-size filtration apparatus. We made a model of hydrotechnical embankment with the following dimensions. Width: base 2.0 m, crown 0.5 m. Slope inclination: waterside 1:1.5, landside 1:1. Embankment height 0.6 m, width 1.0 m, weight 900 kg. The construction mater-ial included a homogeneous mineral subsoil classified as silty medium sand (siMSa). The embankment model made in a medium-size apparatus kept the accumulation level at a height of 0.5 m. With data from the recording systems, we deter-mined the course of the filtration curve. Next, we kept on loading and relieving the embankment crown using an actuator and a VSS plate with a diameter of 300 mm. During this process, we recorded changes in the level of the water table inside the embankment. A decrease in the water table was observed as a result of increased load. Once the load on the embankment crown was reduced, the water level inside the embankment increased. The embankment model built from natural soil works well as a structure that keeps damming water in a continuous manner. The use of drainage in the form of a stone prism at the foot of the landside slope allows protecting the slope against the negative influence of filtration (piping, lique-faction).

Go to article

Authors and Affiliations

Mariusz Cholewa
Download PDF Download RIS Download Bibtex

Abstract

Waste tyres are among the largest and most problematic sources of waste today, due to the large volume produced and their long-lasting decomposition and resistance to water and extreme temperatures. Since 2000 in Europe the EU Landfill Directive has forbidden the disposal of waste tyres in a landfill. Since then waste tyre derived products (TDP), including whole tyres, tyre bales, shreds, chips, and crumb rubber, have been widely used also in civil engineering applications. The baling is nowadays the best way for the product recycling of waste tyres. Waste tyre bales have considerable potential for use in road applications, particularly where their low density, permeability and ease of handling give them an advantage. Road applications include but are not limited to: embankments construction, slope stabilization and repair (landslides), road foundations over soft ground, backfill material for retaining walls and gravity retaining structures (gabion-type). Several case studies, showing the opportunities to use waste tyre bales in road construction, are presented and illustrated in the paper preceded by providing the engineering properties of waste tyre bales, used within the road structures constructed worldwide. The article also describes the first world application of abutment backfill from the tyre bales in a road bridge, realized in Poland.
Go to article

Bibliography


[1] P.J. Bosscher, T.B. Edil, S. Kuraoka, “Design of highway embankments using tire chips”, Journal of Geotechnical and Geoenvironmental Engineering, 123: pp. 295–304, 1997.
[2] J.H. Lee, R. Salgado, A. Bernal, C.W. Lovell, “Shredded tires and rubber-sand as lightweight backfill”, Journal of Geotechnical and Geoenvironmental Engineering, 125: pp. 132–141, 1999. https://doi.org/10.1061/(asce)1090-0241(1999)125:2(132).
[3] R.K. Mittal, G. Gill, “Sustainable application of waste tire chips and geogrid for improving load carrying capacity of granular soils”, Journal of Cleaner Production, 200: pp. 542–551, 2018. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.07.287.
[4] A. Mahgoub, H.E. Naggar, “Coupled TDA-geocell stress-bridging system for buried corrugated metal pipes”, Journal of Geotechnical and Geoenvironmental Engineering, 146: July, 2020. https://doi.org/https://doi.org/10.1016/j.compgeo.2020.103761.
[5] J.D. Simm, M.G. Winter, S. Waite, “Design and specification of tyre bales in construction”, Proceedings of the Institution of Civil Engineers – Waste and Resource Management, 161: pp. 67–76, 2008. https://doi.org/10.1680/warm.2008.161.2.67.
[6] M.G. Winter, J.M. Reid, P.I.J. Griffiths, “Tyre bales in construction: case studies”, Report PPR 045. TRL Limited, Crowthorne, UK, 2005.
[7] PAS (Publicly Available Specification), “Specification for production of tyre bales for use in construction”, PAS 108. London, UK, 2007.
[8] A. Duda, M. Kida, S. Ziembowicz, P. Koszelnik, “Application of material from used car tyres in geotechnics – an environmental impact analysis”, PeerJ 8:e9546, 2020. https://doi.org/10.7717/peerj.9546
[9] M. Gualtieri, M. Andrioletti, C. Vismara, M. Milani, M. Camatini, “Toxicity of tire debris leachates”, Environment International, 31: pp. 723–730, 2005. https://doi.org/10.1016/j.envint.2005.02.001
[10] P. Hennebert, S. Lambert, F. Fouillen, B. Charrasse, “Assessing the environmental impact of shredded tires as embankment fill material”, Canadian Geotechnical Journal, 51: pp. 469–478, 2014. https://doi.org/10.1139/cgj-2013-0194.
[11] L. Liu, G. Cai, J. Zhang, X. Liu, K. Liu, “Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review”, Renewable and Sustainable Energy Reviews, 126: pp. 109–831, 2020. https://doi.org/https://doi.org/10.1016/j.rser.2020.109831.
[12] K. Sonti, S. Senadheera. P. W. Jayawickrama, P. T. Nash, D. D. Gransberg, “Evaluate the uses for scrap tires in transportation facilities”. Research Study No 0-1808, Centre for Multidisciplinary Research in Transportation. Texas Tech University, Lubbock, TX, USA, 2000.
[13] I.F. Hodgson, S.P. Beales, M.J. Curd, “Use of tyre bales as lightweight fill for the A421 improvements scheme near Bedford, UK”, Engineering Geology Special Publications, 26: pp. 101–108, 2012. https://doi.org/10.1144/EGSP26.12.
[14] H. Harri, “Tyre bales form part of Finnish Road”, World Highways, 14: March, 18, 2005.
[15] M.G. Winter, G.R.A. Watts, P.E. Johnson, “Tyre bales in construction”. Report PPR 080. TRL Limited, Crowthorne, UK, 2006.
[16] W. Prikryl, R. Williammee, M.G. Winter, “Slope failure repair using tyre bales at Interstate Highway 20, Tarrant County, Texas, USA”, Quarterly Journal of Engineering Geology and Hydrogeology, 38: pp. 377–386, 2005. https://doi.org/10.1144/1470-9236/04-065.
[17] M.G. Winter, “Road foundation construction using lightweight tyre bales”, Proceedings of the 18th ICSMGE, Paris, pp. 3275–3278, 2013.
[18] C. Mackenzie, T. Saarenketo, “The B871 tyre bale project. The use of recycled tyre bales in a lightweight road embankment over peat”, Research report. Roadscanners, Rovaniemi, Finland, 2003.
[19] P. Bandini, A. T. Hanson, F. P. Castorena, S. Ahmed, “Use of tire bales for erosion control projects in New Mexico”, ASCE Geotechnical Special Publication 179: Characterization, Monitoring, and Modeling of Geosystems, pp. 638–645, New Orleans, LA, USA, 2008.
[20] A. Duda, D. Sobala, “Initial research on recycled tyre bales for road infrastructure applications”, SSP - Journal of Civil Engineering, 12: pp. 55–62, 2017. https://doi.org/10.1515/sspjce-2017-0019
[21] A. Duda, T. Siwowski, “Pressure evaluation of bridge abutment backfill made of waste tyre bales and shreds: experimental and numerical study”, Transportation Geotechnics, 24: pp. 100–366, 2020. https://doi.org/10.1016/j.trgeo.2020.100366.
[22] A. Duda, T. Siwowski, “Experimental investigation and first application of lightweight abutment backfill made of used tyre bales”, Proceedings of CEE 2019. Lecture Notes in Civil Engineering, 47: pp. 66–73, 2020. https://doi.org/10.1007/978-3-030-27011-7_9
[23] B. Freilich, J.G. Zornberg, “Mechanical properties of tire bales for highway applications”. Report No. FHWA/TX-10/0-5517-1, Center for Transportation Research. University of Texas, Austin, TX, USA, 2009.
Go to article

Authors and Affiliations

Aleksander Duda
1
ORCID: ORCID
Tomasz Siwowski
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil Engineering, Environment and Architecture, Al. Powstanców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

A fast reduction of a reservoir level may result in instability of an earth dam caused by the high pore water pressures that remain relatively high in the embankment. Moreover, the dissipation of the accumulated pore water pressures is highly dependent on the permeability of the materials used for the embankment and the storage characteristics of the reservoir. Therefore, in the design of embankment dams, the stability analysis under rapid drawdown loading conditions is an important design case. In this study, the influence of different permeability rates on dam stability under different cases of rapid drawdownwas investigated using the finite element method in SEEP/W and SLOPE/W of the GeoStudio with a case of the Lugoda dam in Ndembera catchment, Tanzania. The modeling process considers the time-dependent hydraulic conditions and the transient flow conditions using different water levels during rapid drawdown for evaluation of the factor of safety. From the 1m per day drawdown rate; the lowest minimum factor of safety value (0.90) was obtained from the 10 -7 m/s material permeability of the upstream zone of the dam. It means that, at a drawdown rate of 1m per day, there is a potential for failure of the embankment if the hydraulic conductivity value will be somewhere below 10 -6 m/s.
Go to article

Authors and Affiliations

Yelbek Utepov
1
ORCID: ORCID
Zbigniew Lechowicz
2
ORCID: ORCID
Askar Zhussupbekov
1
ORCID: ORCID
Zdzisław Skutnik
3
ORCID: ORCID
Aliya Aldungarova
4
ORCID: ORCID
Timoth Mkilima
1
ORCID: ORCID

  1. Department of Civil Engineering, L.N. Gumilyov Eurasian National University, 2 Satpayev Str., 010008 Nur-Sultan, Republic of Kazakhstan
  2. Institute of Civil Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska Str., 02-787 Warsaw, Poland
  3. Institute of Civil Engineering,Warsaw University of Life Sciences, 166 Nowoursynowska Str., 02-787 Warsaw, Poland
  4. CSI Research&Lab, LLP, 010000 Nur-Sultan, Kazakhstan

This page uses 'cookies'. Learn more