Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the semi-empirical model, formulated in the earlier paper [1], was used to control engine exhaust emission under steady-state conditions. The presented optimization method enables us to find the values of engine control parameters that lead to minimization of nitrogen oxide emission. Moreover, the presented method ensures proper engine operating parameters such as mean indicated pressure, thermal efficiency and maximum pressure in the cylinder. Results of numerical calculations are compared with experiment data. An acceptable accuracy was achieved.

Go to article

Authors and Affiliations

Krzysztof Brzozowski
Jan Nowakowski
Download PDF Download RIS Download Bibtex

Abstract

The quantitative evaluation of environmental impact of emission sources is an important step of integrated modeling and the air quality decision support. The problem is especially difficult in the case of a complex, multi-source emission field. The approach discussed in the paper is based on the forecasts of the Eulerian type models of air pollution transport. The aim is to get a quantitative assessment of the contribution of the selected sources, according to the specified, environmental objective function. The approach utilizes the optimal control technique for distributed parameter systems. The adjoint equation, related to the main transport equation of the forecasting model, is applied to calculate the sensitivity of the cost function to the emission intensity of the specified sources. An example implementation of a regional scale, multi-layer dynamic model of SO, transport is discussed as the main forecasting tool. The test computations have been performed for a set of the -major power plants in a selected industrial region of Poland.
Go to article

Authors and Affiliations

Piotr Holnicki

This page uses 'cookies'. Learn more