Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Livestock production is the basis of global food production and it is a serious threat to the environment. Significant environmental pollutants are odors and ammonia (NH3) emitted from livestock buildings. The aim of the study was to determine the concentration and emission factors of ammonia and odors, in the summer season, from a deep-litter fattening house. The research was carried out during summer in a mechanically ventilated fattening piggery located in the Greater Poland Voivodeship. Ammonia concentrations were measured using photoacoustic spectrometer Multi Gas Monitor Innova 1312, and odor concentrations were determined by dynamic olfactometry according to EN 13725:2003 using a TO 8 olfactometer. The NH3 emission factors from the studied piggery, in summer, ranged from 8.53 to 21.71 g·day-1·pig-1, (mean value 12.54±4.89 g·day-1·pig-1). Factors related to kg of body mass were from 0.11 to 0.23 g·day-1·kg b.m.-1 (mean value 0.17±0.06 g·day-1·kg b.m.-1). Odor concentrations in the studied piggery were from 755 to 11775 ouE·m-3 and they were diversified (coefficient of variation 43.8%). The mean value of the momentary odor emission factors was 179.5±78.7 ouE·s-1·pig-1. Factor related to kg of body mass was 2.27±1.71 ouE·s-1·kg b.m.-1. In Poland and many other countries, the litter systems of pigs housing are still very popular. Therefore, there is a need to monitor the pollutant emissions from such buildings to identify the factors influencing the amount of this emission. Another important issue is to verify whether the reduction techniques, giving a measurable effect in laboratory research, bring the same reduction effect in production
Go to article

Bibliography

  1. Bebkiewicz, K., Chłopek, Z., Chojnacka, K., Doberska, A., Kanafa, M., Kargulewicz, I., Olecka, A., Rutkowski, J., Walęzak, M., Waśniewska, S., Zimakowska-Laskowska, M. & Żaczek, M. (2021). Poland’s Informative Inventory Report 2021: Air pollutant emissions in Poland 1990–2019. National Centre for Emissions Management (KOBiZE), Warsaw, Poland. https://cdr.eionet.europa.eu/pl/eu/nec_revised/iir/envyei5sq/IIR_2021_Poland.pdf
  2. Blanes-Vidal, V., Hansen, M.N., Pedersen, S. & Rom, H.B. (2008). Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow, Agriculture, Ecosystems and Environment, 124, pp. 237‒244. DOI:10.1016/j.agee.2007.10.002
  3. Blanes-Vidal, V., Suh, H., Nadimi, E.S., Løfstrøm, P., Ellermann, T., Andersen, H.V. & Schwartz, J. (2012). Residential exposure to outdoor air pollution from livestock operations and perceived annoyance among citizens, Environment International, 40, pp. 44–50. DOI:10.1016/j.envint.2011.11.010
  4. Bokowa, A., Diaz, C., Koziel J. A., McGinley, M., Barclay, J., Schauberger, G., Guillot J.M., Sneath, R., Capelli L., Zorich, V., Izquierdo, C., Bilsen, I., Romain, A.C., del Carmen Cabeza, M., Liu, D., Both, R., Van Belois, H., Higuchi, T. & Wahe, L. (2021. Summary and Overview of the Odour Regulations Worldwide, Atmosphere, 12, pp. 206. DOI:10.3390/atmos12020206
  5. CEN (2003). European Committee for Standardization CEN. Air Quality—Determination of Odour Concentration by Dynamic Olfactometry; EN 13725:2003; CEN: Brussels, Belgium.
  6. Fomunyam, K.G. (2019). Health, mental and emotional impacts of odour producing industrial emissions on man. International Journal of Civil Engineering and Technology, 10, pp. 402–414. Article ID: IJCIET_10_10_039
  7. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/3/i3437e/i3437e.pdf
  8. Guingand, N. & Rugani, A. (2012). Impact of the Reduction of Straw on Ammonia, GHG and Odors Emitted by Fattening Pigs Housed in a Deep-litter System. Ninth International Livestock Environment Symposium. Valencia, Spain, July 8 - 12, ASABE, ILES12-0083.
  9. Guo, H., Dehod, W., Agnew, J., Laguë, C., Feddes, J.R. & Pang, S. (2006). Annual odor emission rate from different types of swine production buildings, Transactions of the ASABE, 49(2), pp. 517−525.
  10. Heber, A., Lim, T., Tao, P., Ni, J. & Schmidt, A. (2008). Effect of Oil Sprinkling in Swine Finishing Barns on Odor Characteristics and Emissions, Chemical Engineering Transactions, 15, pp. 353−361.
  11. Jo, G., Ha, T., Jang, J.N., Hwang, O., Seo, S., Woo, S.E., Lee, S., Kim, D. & Jung, M. (2020). Ammonia Emission Characteristics of a Mechanically Ventilated Swine Finishing Facility in Korea, Atmosphere, 11, pp. 1088. DOI:10.3390/atmos11101088
  12. Margeta, V. & Kralik, G. (2006). Results of zeolit application in fattening of pigs on deep litter, Krmiva, 48, pp. 69-75.
  13. Mielcarek, P., Rzeźnik, W. & Rzeźnik, I. (2014). Ammonia and greenhouse gas emissions from a deep litter farming system for fattening pigs, Problems of Agricultural Engineering, 1(83), pp. 83–90.
  14. Mielcarek, P. & Rzeźnik, W. (2015). Odor Emission Factors from Livestock Production. Polish Journal of Environmental Studies, 24(1), pp. 27–35. DOI: 10.15244/pjoes/29944
  15. Mielcarek, P. & Rzeźnik, W. (2017). The effect of season on the concentration of odours in deep-litter piggery, Journal of Research and Applications in Agricultural Engineering, 62(1), pp. 132−135.
  16. Mielcarek-Bocheńska, P. & Rzeźnik, W. (2019). Ammonia emission from livestock production in Poland and its regional diversity, in the years 2005–2017. Archives of Environmental Protection, 45(4), pp. 114–121. DOI:10.24425/aep.2019.130247
  17. Ngwabie, N.M., Jeppsson, K.H., Nimmermark, S. & Gustafsson, G. (2011). Effects of animal and climate parameters on gas emissions from a barn for fattening pigs, Applied Engineering Agriculture, 27, pp. 1027‒1037. DOI:10.1016/j.atmosenv.2011.08.027
  18. Ni, J.Q., Shi, C., Liu, S., Richert, B.T., Vonderohe, C.E. & Radcliffe, J.S. (2019). Effects of antibiotic-free pig rearing on ammonia emissions from five pairs of swine rooms in a wean-to-finish experiment, Environment International, 131, pp. 104931. DOI:10.1016/j.envint.2019.104931
  19. Nicks, B., Laitat, M., Farnir, F., Vandenheede, M., Désiron, A., Verhaeghe, C. & Canart, B. (2004). Gaseous emissions from deep-litter pens with straw or sawdust for fattening pigs, Animal Science, 78, pp. 99–107. DOI:10.1017/S1357729800053881
  20. Philippe, F.X., Laitat, M., Canart, B., Vandenheede, M. & Nicks, B. (2007). Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter, Livestock Science, 111, pp. 144–152. DOI:10.1016/j.livsci.2006.12.012
  21. RM (2010). Regulation of the Minister for Agriculture and Rural Development of 15 February 2010 on the requirements and procedure for keeping livestock species for which protection standards have been laid down in European Union legislation. Dz.U. 2010 nr 56 poz. 344. (in Polish)
  22. Rzeźnik, W., Mielcarek, P. & Rzeźnik, I. (2014). Odour emission from a deep litter farming system for fattening pigs, Problems of Agricultural Engineering, 1(83), pp. 91–98.
  23. Schauberger, G., Lim, T.T., Ni, J.Q., Bundy, D.S., Haymore, B.L., Diehl, C.A., Duggirala, R.K. & Heber, A.J. (2013). Empirical model of odor emission from deep-pit swine finishing barns to derive a standardized odor emission factor, Atmospheric Environment, 66, pp. 84–90. DOI:10.1016/j.atmosenv.2012.05.046
  24. Sousa, F.A., Campos, A.T., Amaral P.I.S, Castro, J.O., Yanagi Junior T., Veloso, A.V. & Cecchin, D. (2014). Aerial environment and deep litter temperature in a swine building, Journal of Animal Behaviour and Biometeorology, 2(4), pp. 109–116. DOI:10.14269/2318-1265/jabb.v2n4p109-116
  25. Viatte, C., Wang, T., Van Damme, M., Dammers, E., Meleux, F., Clarisse, L., Shephard, M.W., Whitburn, S., Coheur, P.F., Cady-Pereira, K. E. & Clerbaux, C. (2020). Atmospheric ammonia variability and link with particulate matter formation: a case study over the Paris area, Atmospheric Chemistry and Physics, 20, pp. 577–596. DOI:10.5194/acp-20-577-2020
  26. Wang, K., Wei, B., Zhu, S. & Ye Z. (2011). Ammonia and odour emitted from deep litter and fully slatted floor systems for growing-finishing pigs, Biosystems Engineering, 109(3), pp. 203–210. DOI:10.1016/j.biosystemseng.2011.04.001
  27. Wei, B., Wang, K., Dai, X., Li, Z. & Luo, H. (2010). Evaluation of Indoor Environmental Conditions of Micro-fermentation Deep Litter Pig Building in Southeast China. 2010 ASABE Annual International Meeting, Pittsburgh, Pennsylvania, USA, June 20 - June 23, ASABE 1009679. DOI:10.13031/2013.29979
  28. Wi, J., Lee, S., Kim, E., Lee, M., Koziel, J.A. & Ahn, H. (2019). Evaluation of Semi-Continuous Pit Manure Recharge System Performance on Mitigation of Ammonia and Hydrogen Sulfide Emissions from a Swine Finishing Barn, Atmosphere, 10, pp. 170. DOI:10.3390/atmos10040170
  29. Yunnen, C., Changshi, X. & Jinxia, N. (2016). Removal of Ammonia Nitrogen from Wastewater Using Modified Activated Sludge, Polish Journal of Environmental Studies, 25(1), pp. 419–425. DOI:10.15244/pjoes/60859
  30. Zhou, X. & Zhang, Q. (2003). Measurements of odour and hydrogen sulfide emissions from swine barns, Canadian Biosystems Engineering, 45, pp. 6.13−6.18.
  31. Zong, C., Li, H. & Zhang, G. (2015). Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems, Agriculture, Ecosystems & Environment, 208, pp 94-105. DOI:10.1016/j.agee.2015.04.031.
Go to article

Authors and Affiliations

Paulina Mielcarek-Bocheńska
1
ORCID: ORCID
Wojciech Rzeźnik
2

  1. Institute of Technology and Life Sciences-National Research Institute, Poland
  2. Poznan University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The emission rate of fibers released lrorn the new/fresh and used/worn ceramic fiber material. glass wool and man-made mineral fiber material due lo mechanical impact was determined experimentally. The emission rate has been defined as a number or fibers emitted per unit mass and unit impaction energy. The averaged emission rate of short fibers (LS 5 run) for all studied fresh non-asbestos fiber materials ranged lrom 2.2 to 20 fibers/(g·.l), while the emission or long fibers (I,> 5 urn) was between 2.2 and I 00 fibers/(g·J). The susceptibility or worn fiber-containing materials 10 emitting fibrous particles due 10 mechanical impaction was significantly diverse. Emission from glass wool unchanged with the exploitation, while the emission rate of the mineral fiber material increased by a factor of I O·' compared 10 new material. The dominating population or emitted fibers from studied materials ranged trorn 2 10 around 8 pm in length.
Go to article

Authors and Affiliations

Józef S. Pastuszka
Download PDF Download RIS Download Bibtex

Abstract

The aim of this research was to assess the content and composition of the pollutants emitted by domestic central heating boilers equipped with an automatic underfeed fuel delivery system for the combustion chamber. The comparative research was conducted. It concerned fuel properties, flue gas parameters, contents of dust (fl y ash) and gaseous substances polluting the air in the flue gases emitted from a domestic CH boiler burning bituminous coal, pellets from coniferous wood, cereal straw, miscanthus, and sunflower husks, coniferous tree bark, and oats and barley grain. The emission factors for dust and gaseous air pollutants were established as they are helpful to assess the contribution of such boilers in the atmospheric air pollution. When assessing the researched boiler, it was found out that despite the development in design and construction, flue gases contained fly ash with a significant EC content, which affected the air quality.

Go to article

Authors and Affiliations

Jan Konieczyński
Ewelina Cieślik
Bogusław Komosiński
Tomasz Konieczny
Barbara Mathews
Tomasz Rachwał
Grzegorz Rzońca
Download PDF Download RIS Download Bibtex

Abstract

Leaded and unleaded petrol samples as well as diesel oil samples were analysed lo determine Cd. Cr. Cu, Ni, Pb, Zn and As concentrations. In order lo obtain low detection limits new method of samples preparation was used. The fuel samples were dissolved in hydroraffinate which was the crude oil fraction obtained as a result of atmospheric distillation in the range of I 50---250°C. The obtained data on the metal concentrations in the investigated fuels allow determining the following emission factors of traffic fuels consumption processes [mg/kg fuel]: leaded and unleaded petrol - Cr - 0,5; Cu - 0,3; Ni - 0.5; Pb - 50 (leaded): Pb - 5 (unleaded); diesel fuel - Cd - 0,05: Cu - 0,3: Ni - 0.5. It was found in the investigations that traffic fuels consumption is not the source of Zn and As emission. The same refers to Cd emission in case of leaded and unleaded petrol consumption. On the basis of the identified emission factors Pb emission from traffic in Poland for years 1980---1999 as well as Cd, Cr, Cu and Ni emission for I 999 were assessed. The following emission in 1999 was determined as a result of the assessment [Mg]: Cd - 0,3: Cr - 2,9: Cu - 3,5 and Ni - 5,9. Emission of Pbu, was 237.6 Mg and Pb1.,w 79,2 Mg. These emissions were also compared with the total metal emissions in Poland.
Go to article

Authors and Affiliations

Stanisław Hlawiczka
Zofia Kowalewska
Download PDF Download RIS Download Bibtex

Abstract

An analysis of the methods used in Bulgaria for estimating CO2, SO2 and dust emissions has been conducted. The first methodology, which is officially used by all energy auditors at the Agency for Sustainable Energy Development targets the energy efficiency of combustion devices installed mainly at industrial enterprises. The second methodology, used by the Ministry of Environment and Water, is more comprehensive and can be applied to thermal power plants, small combustion plants as well as industrial systems. In recent years, many projects related to energy efficiency and renewable energy projects, including hydrogen technologies, which require an assessment of reduced greenhouse gas emissions, have been implemented as a priority. The use of reliable and accurate methods is essential in the assessment of greenhouse emissions. A novel methodology, based on stoichiometric equations of the combustion process for solid, liquid and gaseous fuels has been proposed and comprised. This novel methodology is characterized by higher precision compared to the methods currently in place and this is achieved through calculating emissions from the combustion of energy fuels accounting for the full elemental composition of the fuel and its heating value, whereas the current commonly applied methods use only the fuel type and the carbon content. A further benefit of the proposed methodology is the ability to estimate emissions of fuels for which there is no alternative method for calculating CO2, SO2 and dust. Results of emission calculations according to the analysed methods are presented. Finally, a comparative analysis between the presented methodologies including an assessment of their accuracy and universal applicability has been made.
Go to article

Authors and Affiliations

Iliya Krastev Iliev
1
Hristo Ivanov Beloev
1
Diana Ivanova Ilieva
2
Janusz Badur
3

  1. University of Ruse, Heat, Hydraulics and Environmental Engineering, Studentska 8, 7017 Ruse, Bulgaria
  2. University of Telecommunications and Post, Akad. Stefan Mladenov 1, 1700 Sofia, Bulgaria
  3. Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-251 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The emission of dust from power and industrial sources introduces a lot of contaminants into the air, including compounds of trace clements contained in fuels and raw materials. They arc contained in rcspirablc dust particles, creating hazard to human health. The results of investigations into the occurrence of selected trace clements in PM1, PM25 and PM10 fractions of dust emitted from coal-fired boilers equipped with air protection devices such as cyclone, clectrofiltcr, wet and dry-scrubbing FGD plant have been presented. Dust emitted from a coke battery (battery heating) and rotary kiln for cement manufacture was also subjected to research. The research material was taken by means of a cascade impactor, enabling a fraction or different grain size dust to be separated from a stream of dust collected in an elcctrofiltcr. The ICP-AES method (of atomic emission spectrometry (AES) with plasma excitation) was used to determine the trace clements alter prior mineralization of samples by microwave method. The results of measurements and analyses were presented by determining the ranges of trace elements occurrence in flue dust and emission factors in PM,s It was found out that big utility boilers and rotary kilns in the cement industry which are equipped with air protection devices meeting BAT requirements do not contaminate the air with dust and dust-related trace elements in the amounts that could create hazard. Excessive emission of dust, including a resp i rabie fraction is still observed in the case of municipal heating plants equipped solely with mechanical dust separators (cyclones). Coke battery heating docs not pose danger due to small range of influence.
Go to article

Authors and Affiliations

Jan Konieczyński
Katarzyna Stec
Download PDF Download RIS Download Bibtex

Abstract

Growing awareness for occupational safety in the welding environment needs a sustainable welding system. Welding gases releases toxic tiny particles and gases that inflict severe health consequences in the weld zone are unsolicited. Some of the other main adverse effects are lung disease, hemoptysis, pulmonary inflammation, pneumoconiosis, etc. GMAW procedure has been used for welding 316L stainless steel plates of 3 mm, 5 mm, and 6 mm. Various current configurations with gas flow rate of 5 LPM, 10 LPM and 15 LPM were also used to achieve optimum butt joint performance and to reduce the production rate of fume contributing to cost-effectiveness. In this research a cost-effective fume extraction hood was fabricated for measuring Emission factor produced during welding. Various shielding gas compositions including Pure Argon, Pure CO2, 92% Ar+8% CO2 and 88% Ar+12% CO2 were used to determine the best operating parameters in the GMAW method. To satisfy the latest Permissible Exposure Limit (PEL) legislation, optimum technical parameters for efficient welding were acknowledged with the lowest emission factor. A maximum reduction of Emission factor can be achieved by using Pure Argon. The inclusion of CO2 as a shielding gas mixture gives higher emission factor when compared to Pure Argon. Very low emission factor were witnessed in this research when compared to previous investigations. Lower emission factor of 2941.17 mg /kg of electrode, 4411.76 mg/kg of electrode and 7352.94 mg/kg of electrode were obtained for pure argon as shielding gas with 150 A welding current.
Go to article

Authors and Affiliations

K.V. Satheesh Kumar
1
ORCID: ORCID
P. Selvakumar
2
ORCID: ORCID
K.R. Uvanshankar
1
ORCID: ORCID
S. Thirunavukarasu
1
ORCID: ORCID
V. Vijay Anand
1
ORCID: ORCID
D. Vishal
1
ORCID: ORCID

  1. Department of Mechanical Engineering, Kongu Engineering College, Erode- 638060, Tamilnadu, India
  2. Department of Chemistry, Vivekanandha College of Arts & Sciences for Women, Tiruchengode- 637205, Tamilnadu, India

This page uses 'cookies'. Learn more