Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present study was specifically designed to develop bio-fungicides that may help mitigate reliance on hazardous synthetic chemicals which give rise to environmental safety concerns. A survey (2021–2022) of local fruit markets in Islamabad, Pakistan included morpho-molecular disease identification. It revealed Penicillium chrysogenum as a major phytopathogenic fungi causing fruit rot. The fungicidal action of plant essential oils might be boosted by the technique of application therefore, nanoencapsulation of essential oil and chitosan was performed. To attain the objective of antimicrobial packaging, essential oil and chitosan tablets were encapsulated in spun bond sachets against P. chrysogenum using a sachet volatile phase technique. In vitro screening of nano encapsulated eucalyptus essential oil showed significant inhibition of radial growth of P. chrysogenum colonies at 1.6 mg · ml–1 followed by 1.4, 1.2 and 1.0 mg · ml –1. Results of Gas Chromatography and Mass Spectrometry revealed the presence of eucalyptol in eucalyptus EO as a major antifungal component. An in vivo experiment analyzing the efficacy of essential oil tablets against pre-inoculated peach fruit with P. chrysogenum at ambient temperatures (7–37°C) showed significant reduction in lesion diameter, disease severity and prolonged shelf-life of peaches of more than 2 weeks. The natural ripening process of peach was not affected by the presence of antifungal sachets as no significant alteration in weight loss of fruit was recorded. The suppressiveness of fungal mycelial growth of P. chrysogenum was directly proportional to increases in E. globulus oil concentration. This research may have a significant impact on prolonging the shelf-life of peach fruit.
Go to article

Authors and Affiliations

Khan Gull-e-laala
1
Gulshan Irshad
2
Farah Naz
2
Ashfaq Ahmed Hafiz
3

  1. Department of Plant Pathology, University of Poonch, Rawalakot, Pakistan
  2. Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
  3. Department of Horticulture, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to evaluate the nutritional behavior and some immunological criteria (encapsulation index and phenoloxidase – PO activity, the key enzyme for melanization) as well as to study the effect of protein to fat (P : F) diets on hypopharyngeal gland (HPG) protein content. Bees were restricted to consuming specific P : F diets varying in fat ratio under laboratory conditions. These diets included 25 : 1, 10 : 1, 5 : 1 (low-fat diet, LFD); 1 : 1 (equal-fat diet); 1 : 5, 1 : 10 (high-fat diet, HFD), and 1 : 0 (zero-fat diet) as a control. Bees preferred low-fat diets over high-fat diets, where it was 11.27 ± 0.68 μl · day–1 bee in 10 : 1 P : F, while it was 4.99 ± 0.67 μl · day–1 bee in 1 : 10 P : F. However, sucrose consumption was higher in high-fat diets where it was 25.83 ± 1.69 μl · day –1 bee in 10 : 1 P: F, while it was 30.66 ± 0.9 μl · day–1 bee in 1 : 10 P : F. The encapsulation index and phenoloxidase activity of bees were positively linked with the fat level they consumed during all 10 days. The maximum percentage of encapsulation index was 74.6 ± 7.2% in bees fed a high-fat diet, whereas the minimum percentage was 16.5 ± 3.6% in bees which consumed a lowfat diet. Similarly, phenoloxidase activity increased in the haemolymph with increasing fat consumed by bees (0.001 ± 0.0001 and 0.005 ± 0.0003 mM · min –1 · mg –1 at 25 : 1 and 1 : 10 P : F, respectively). The protein content of hypopharyngeal glands in bees which consumed HFD was double that of LFD. Overall results suggest a connection between a fat diet and bee health, indicating that colony losses in some cases can be reduced by providing a certain level of fat supplemental feeding along with sucrose and protein nutrition.
Go to article

Authors and Affiliations

Mushtaq T. Al-Esawy
1

  1. Plant Protection Department, Faculty of Agriculture, University of Kufa, Najaf, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Most antiseptic agents are intended for use on intact skin, e.g. for hand hygiene or skin preparation before any medical procedure. This paper presents multiple emulsion-based antiseptic agents as formulations for application to body surfaces with modified release rates.
Multiple emulsions with a co-encapsulated antiseptic (phenyl salicylate – salol) and an agent preventing microorganism growth (benzoic acid) were formed in a Couette–Taylor flow apparatus. Results confirmed the possibility of the release kinetics modification while two compounds were encapsulated in the internal droplets of emulsions to control the release rates and time of the dose release. The addition of benzoic acid as a second active compound of the encapsulation process in the internal phase of double O1/W/O2 emulsion reduced the time necessary for the total release of salol triggering a two-step release.
Go to article

Bibliography

Chan R.J., Keller J., Cheuk R., Blades R., Tripcony L., Keogh S., 2012. A double-blind randomised controlled trial of a natural oil-based emulsion (Moogoo Udder Cream®) containing allantoin versus aqueous cream for managing radiation-induced skin reactions in patients with cancer. Radiat. Oncol., 7, 121. DOI: 10.1186/1748-717X-7-121.
Chan R.J., Mann J., Tripcony L., Keller J., Cheuk R., Blades R., Keogh S., Poole C., Walsh C., 2014. Natural oil-based emulsion containing allantoin versus aqueous cream for managing radiation-induced skin reactions in patients with cancer: A phase 3, double-blind, randomized, controlled trial. Int. J. Radiat. Oncol. Biol. Phys., 90, 756–764. DOI: 10.1016/j.ijrobp.2014.06.034.
Cohen J.L., Jorizzo J.L., Kircik L.H., 2007. Use of a topical emulsion for wound healing. J. Support Oncol., 5(10 Suppl 5): 1–9.
Dluska E., Cui Z., Markowska-Radomska A., Metera A., Kosicki K., 2017a. Cryoprotection and banking of living cells in a 3D multiple emulsion-based carrier. Biotechnol. J., 12, 1600692. DOI: 10.1002/biot.201600692.
Dluska E., Hubacz R., Wronski S., Kamienski J., Dylag M., Wojtowicz R., 2007. The influence of helical flow on water fuel emulsion preparation. Chem. Eng. Commun., 194, 1271–1286. DOI: 10.1080/00986440701293959.
Dłuska E., Hubacz, R., 2000. Mass transfer in the two-phase helicoidal contactor. Chem. Process Eng., 21, 103–113. Dluska E., Markowska-Radomska A., 2010. Regimes of multiple emulsions ofW1/O/W2 and O1/W/O2 type in the continuous Couette–Taylor flow contactor. Chem. Eng. Technol., 33, 113–120. DOI: 10.1002/ceat.200900278.
Dluska E., Markowska-Radomska A., Metera A., Tudek B., Kosicki K., 2017b. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery. Nanomed., 12, 2183–2197. DOI: 10.2217/nnm-2017-0112.
Durand L., Habran N., Henschel V., Amighi K., 2009. In vitro evaluation of the cutaneous penetration of sprayable sunscreen emulsions with high concentrations ofUVfilters. Int. J. Cosmet. Sci., 31, 279–292. DOI: 10.1111/j.1468-2494.2009.00498.x.
Fabbrocini G., CameliN.,Romano M.C., Mariano M., Panariello L., Bianca D., Monfrecola G., 2012. Chemotherapy and skin reactions. J. Exp. Clin. Cancer Res., 31, 50. DOI: 10.1186/1756-9966-31-50.
Goldstein D., Gofrit O., Nyska A., Benita, S., 2007. Anti-HER2 cationic immunoemulsion as a potential targeted drug delivery system for the treatment of prostate cancer. Cancer Res., 67, 269–275. DOI: 10.1158/0008-5472.CAN-06-2731.
Hymes S.R., Strom E.A., Fife C., 2006. Radiation dermatitis: Clinical presentation, pathophysiology, and treatment 2006. J. Am. Acad. Dermatol., 54, 28–46. DOI: 10.1016/j.jaad.2005.08.054.
Lam P.L., Gambari R., 2014. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J. Controlled Release, 178, 25–45. DOI: 10.1016/j.jconrel.2013.12.028.
Ma Y., Liu D., Wang D., Wang Y., Fu Q., Fallon J. K., Liu, F., 2014. Combinational delivery of hydrophobic and hydrophilic anticancer drugs in single nanoemulsions to treat MDR in cancer. Mol. Pharmaceutics, 11, 2623–2630. DOI: 10.1021/mp400778r.
Markowska-Radomska A., Dluska E., 2012. The multiple emulsion entrapping active agent produced via one-step preparation method in the liquid-liquid helical flow for drug release study and modelling, In: Starov V., Griffiths P. (Eds.), UK Colloids 2011. Progress in Colloid and Polymer Science, Vol 139. Springer, Berlin, Heidelberg, 29–34. DOI: 10.1007/978-3-642-28974-3_6.
Markowska-Radomska A., Dluska E., 2016. An evaluation of a mass transfer rate at the boundary of different release mechanisms in complex liquid dispersion. Chem. Eng. Process. Process Intensif., 101, 56–71. DOI: 10.1016/j.cep.2015.12.006.
Montenegro L., Carbone C., Paolino D., Drago R., Stancampiano A.H., Puglisi G., 2008. In vitro skin permeation of sunscreen agents from O/W emulsions. Int. J. Cosmet. Sci., 30, 57–65. DOI: 10.1111/j.1468-2494.2008.00417.x.
Otto A., du Plessis J., Wiechers J.W., 2009. Formulation effects of topical emulsions on transdermal and dermal delivery. Int. J. Cosmet. Sci., 31, 1–19. DOI: 10.1111/j.1468-2494.2008.00467.x.
Özer Ö., Özyazici M., Tedajo M., Taner M. S., Köseoglu K., 2007. W/O/W multiple emulsions containing nitroimidazole derivates for vaginal delivery. Drug Delivery, 14, 139–145. DOI: 10.1080/10717540601067463.
Perrie Y., Rades T., 2012. Pharmaceutics – Drug delivery and targeting. 2nd Ed. Pharmaceutical Press, London.
Priyadarshini C., Mohapatra J., Kumar Sahoo T., Sekhar Pattnaik S., 2016. Chemotherapy induced skin toxicities and review of literature. J. Cancer Tumor Int., 3, 1–16. DOI: 10.9734/JCTI/2016/22651.
PubChem CID 243, Benzoic acid. National Institutes of Health. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Benzoic-acid.
PubChem CID 8361, Phenyl salicylate.National Institutes of Health.Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Phenyl-salicylate.
Purnamawati S., Indrastuti N., Danarti R., Saefudin T., 2017. The role of moisturizers in addressing various kinds of dermatitis: A review. Clin. Med. Res., 15, 75–87. DOI: 10.3121/cmr.2017.1363.
Raynal S., Grossiord J.L., Seiller M., Clausse, D., 1993. A topical W/O/W multiple emulsion containing several active substances: formulation, characterization and study of release. J. Controlled Release, 26, 129–140. DOI: 10.1016/0168-3659(93)90112-I.
Siegel R.A., Rathbone M.J., 2012. Overview of controlled release mechanisms. In: Siepmann J., Siegel R.A., Rathbone M.J. (Eds.). Fundamentals and applications of controlled release drug delivery. Advances in Delivery Science and Technology. Springer, Boston, MA, 19–43. DOI: 10.1007/978-1-4614-0881-9_2.
Spałek M., 2016. Chronic radiation-induced dermatitis: challenges and solutions. Clin. Cosmet. Invest. Dermatol., 9, 473–482. DOI: 10.2147/CCID.S94320.
Wilson C.G., 2012. The need for drugs and drug delivery systems. In: Siepmann J., Siegel R.A., Rathbone M.J. (Eds.). Fundamentals and applications of controlled release drug delivery. Advances in Delivery Science and Technology. Springer, Boston, MA, 3–18. DOI: 10.1007/978-1-4614-0881-9_1.
Go to article

Authors and Affiliations

Agnieszka Markowska-Radomska
1
ORCID: ORCID
Ewa Dluska
1
ORCID: ORCID
Agata Metera
1
Maria Wojcieszak
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The process of obtaining alginate microspheres (AMs) by emulsification method was optimized by applying statistical analysis software. Ten batches of microspheres were prepared using the fractional plan 3 (K-p). AMs were obtained with two different methods: an ultrasonic homogenization (UH) process and a rotor-stator mechanical homogenization (MH). The amount of a cross-linking agent (CaCl 2), calcium chloride rate addition, and the sonication amplitude (UH) or the speed of rotor rotation (MH) were selected as formulation variables. All the batches were evaluated in terms of stability and size of the alginate microspheres. Approximation profiles were developed. As a result of the conducted research, stable alginate microspheres with sizes ranging from 10 to 30 micrometres were obtained. The obtained results showed that the quality of AMs was mainly affected by the concentration and the rate of calcium chloride addition into the system. Therefore, the role of calcium ions in the mechanisms of shell structuring was discussed. Lactobacillus casei bacteria were encapsulated into the batches found to be optimum. The high encapsulation efficiency (EE) of the bacteria (72-94%) depending on the form) and their viability over time were obtained. The model developed in the study can be effectively utilized to achieve the AMs formulations.
Go to article

Authors and Affiliations

Anna Łętocha
1
Alicja Michalczyk
2
ORCID: ORCID
Małgorzata Miastkowska
1
ORCID: ORCID
Elżbieta Sikora
1
ORCID: ORCID

  1. Cracow University of Technology, Department of Chemical Engineering and Technology,Cracow, Poland
  2. Lukasiewicz - Research Network-Institute of Industrial Organic Chemistry, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Contamination of water bodies by heavy metals is a continuously growing environmental issue. High concentrations of mercury (Hg) in river waters are a recognized environmental problem, because it is one of the most toxic heavy metal ions as it causes damage to the central nervous system. Its negative impact has led to the development of different methods for the treatment of effluents contaminated with Hg(II). The aim of this article is to evaluate the use of coffee ( Coffea arabica) residues as adsorbent of Mercury in an aqueous solution. Four kinetic models, including intraparticle diffusion, pseudo-first-order, pseudo-second-order, and Elovich kinetic models were applied to explore the internal mechanism of mercury adsorption. Results indicate that the pseudo-first-order and pseudo-second-order models could accurately describe the adsorption process. It means that chemical adsorption play an important role in the adsorption of mercury by activated carbon. Meanwhile, the external mass transfer process is more effective in controlling the activated carbon mercury adsorption according to the fitting result of the pseudo-first-order model. The fitting to Langmuir’s model suggested that the material surface is energetically homogeneous. The technique of contaminated biomass encapsulation proved to be safe for short-term disposal when metal recovery is not desired.
Go to article

Authors and Affiliations

Candelaria N. Tejada-Tovar
1
ORCID: ORCID
María M. Rocha-Caicedo
2
Isabel C. Paz-Astudillo
2
ORCID: ORCID

  1. Universidad de Cartagena, Faculty of Engineering, Department of Chemical Engineering, Avenida Del Consulado 48-152, Cartagena 130014, Colombia
  2. Universidad del Tolima, Faculty of Agronomic Engineering, Ibagué, Colombia
Download PDF Download RIS Download Bibtex

Abstract

The electrostatic impulse method is an established method for producing microbeads or capsules. Such particles have found application in biomedical engineering and biotechnology. The geometric properties of the droplets – constituting precursors of microbeads and capsules – can be precisely controlled by adjusting the geometry of the nozzle system, the physical properties and the flow rate of the fluids involved, as well as the parameters of the electrostatic impulse. In this work, a method of mathematical modeling of the droplet generation process using the electrostatic impulse method in a single nozzle system is presented. The developed mathematical model is an extension of the standard Volume of Fluid (VOF) model by addition of the effect of the electric field on the fluid flow. The model was implemented into the OpenFOAM toolkit for computational fluid dynamics (CFD). The performed CFD simulation results showed good agreement with experimental data. As a result, the influence of all process parameters on the droplet generation process was studied. The most significant change in droplet generation was caused by changing the electrostatic impulse strength. The presented modeling method can be used for optimization of process design and for studying the mechanisms of droplet generation. It can be extended to describe multi nozzle systems used for one-step microcapsule production.
Go to article

Authors and Affiliations

Piotr Cendrowski
1
ORCID: ORCID
Katarzyna Kramek-Romanowska
1
ORCID: ORCID
Dorota Lewińska
2
ORCID: ORCID
Marcin Grzeczkowicz
2
ORCID: ORCID
Paulina Korycka
3
ORCID: ORCID
Jan Krzysztoforski
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Ludwika Warynskiego 1, Warsaw, Poland
  2. Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, ul. Ks. Trojdena 4, Warsaw, Poland
  3. Foundation of Research and Science Development, Rydygiera 8, 01-793 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Shoot tips excised from shoot culture of Salvia officinalis were encapsulated in 2% or 3% (w/v) sodium alginate and exposed to 50 mM calcium chloride for complexation. Immediately or after 6, 12 or 24 weeks of storage at 4°C, the synthetic seeds were cultured for 6 weeks on half-strength MS medium supplemented with indole-3-acetic acid (IAA) (0.1 mg/l) and solidified with 0.7% agar. The frequency of shoot and root emergence from encapsulated shoot tips was affected by the concentrations of sodium alginate and additives in the gel matrix (sucrose, gibberellic acid, MS nutrient medium) as well as duration of storage. The frequency of shoot and root induction of non-stored synthetic seeds was highest with shoot tips encapsulated with 2% sodium alginate containing 1.5% sucrose and 0.5 mg/l gibberellic acid (GA3). Shoot tips maintained their viability and ability to develop shoots even after 24 weeks of storage when they were encapsulated in 3% alginate with 1/3 MS medium, sucrose (1.5%) and GA3 (0.25 mg/l). Root formation tended to decrease with storage time. Overall, 90% of the plantlets derived from stored and non-stored synthetic seeds survived in the greenhouse and grew to phenotypically normal plants. This procedure can enable the use of synthetic seed technology for germplasm conservation of S. officinalis, a plant species of high medical and commercial value.

Go to article

Authors and Affiliations

Izabela Grzegorczyk
Halina Wysokińska
Download PDF Download RIS Download Bibtex

Abstract

The application of stone column technique for improvement of soft soils has attracted a considerable attention during the last decade. However, in a very soft soil, the stone columns undergo excessive bulging, because of very low lateral confinement pressure provided by the surrounding soil. The performance of stone column can be improved by the encapsulation of stone column by geosynthetic, which acts to provide additional confinement to columns, preventing excessive bulging and column failure. In the present study, a detailed experimental study on behavior of single column is carried out by varying parameters like diameter of the stone column, length of stone column, length of geosynthetic encapsulation and stiffness of encapsulation material. In addition, finite-element analyses have been performed to access the radial deformation of stone column. The results indicate a remarkable increase in load carrying capacity due to encapsulation. The load carrying capacity of column depends very much upon the diameter of the stone column and stiffness of encapsulation material. The results show that partial encapsulation over top half of the column and fully encapsulated floating column of half the length of clay bed thickness give lower load carrying capacity than fully encapsulated end bearing column. In addition, radial deformation of stone column decreases with increasing stiffness of encapsulation material.

Go to article

Authors and Affiliations

Y.K. Tandel
C.H. Solanki
A.K. Desai
Download PDF Download RIS Download Bibtex

Abstract

High voltage DC insulation plays an important role, especially in power transmission systems (HVDC) but also increasingly on medium voltage levels (MVDC). The space charge behavior under DC voltage has great importance on electrical insulation reliability. This paper reports investigations of encapsulated space charge in homo-multilayer dielectric materials using the pulsed electro-acoustic (PEA) method. The charge has been introduced on the homo-layer interface by corona sprinkling prior to encapsulation. Two doses of charge density were accumulated on the dielectric surface in two types of dielectric materials Kapton and LDPE. The polarization DC voltage was applied in 2 min intervals in steps corresponding to an effective electric field strength in a range of 8-40 kV/mm for Kapton and 10-50 kV/mm for LDPE. The PEA-based detected space charge was compared at the initial, reference stage, prior to charge accumulation, and after corona sprinkling of defined charge density. The evaluation was based on the PEA time-dependent charge distributions and charge profiles referring to the DC polarization field strength. The goal of the experiment was to identify the relationship and the character of the known sprinkled and encapsulated charge inside homo-layered materials using the PEA method. According to the observations, the ratio between sprinkled charge densities is proportional to the encapsulated, charge densities measured by the PEA method on the interfacial homo-layer for the Kapton specimen. In the case of LDPE, a fast decrease of interfacial charge was observed, especially at a higher polarization field above 10 kV/mm. The encapsulation of the known charge amount can be extended to different types of multilayer material. The presented methodology might be used also for extended calibration of the PEA measurement system.
Go to article

Authors and Affiliations

Marek Florkowski
1
ORCID: ORCID
Maciej Kuniewski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland

This page uses 'cookies'. Learn more