Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article examines the environmental performance of a diesel generator that runs on a biofuel mixture. Biofuels are considered to be more environmentally friendly than traditional petroleum products and have become popular alternatives in the field of electricity production. To reduce dependence on petroleum fuels and decrease harmful exhaust-gas emissions from diesel generators, it is suggested to use biodiesel fuel and its mixture with diesel fuel. Various environmental indicators were measured and analyzed in this study, including the emissions of harmful substances, carbon dioxide, nitrogen oxides and particulates. By using biofuels, pollutant emissions are expected to be reduced because biofuels are made from renewable sources such as vegetable oils or biomass. The results of the study show that the use of a biofuel mixture in a diesel generator leads to a significant reduction in the emission of harmful substances compared to the use of traditional petroleum products. A reduction in the emissions of carbon dioxide and nitrogen oxides was found, which contributes to a reduction of the impact on climate change and air pollution. In addition, a decrease in particle emissions was noted, which contributes to the improvement of air quality and people’s health. The goal was achieved by researching the impact of a mixture of diesel and biodiesel fuel on the technical, economic and environmental indicators of an autonomous diesel generator. The regulation of the composition of the fuel mixture ensured the preservation of the power of the generator in all its modes of operation, while reducing the cost of purchasing fuel by 10% and reducing the smokiness of exhaust gas by up to 57%, depending on the mode of operation of the diesel engine.
Go to article

Authors and Affiliations

Alexander Galushchak
1
ORCID: ORCID
Serhii Burlaka
2
ORCID: ORCID
Ihor Kupchuk
2
ORCID: ORCID
Valerii Bondarenko
3
ORCID: ORCID
Yaroslav Gontaruk
4
ORCID: ORCID

  1. Vinnytsia National Technical University, Ukraine
  2. Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
  3. National University of Life and Environmental Sciences of Ukraine, Ukraine
  4. Vinnytsia National Agrarian University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this article is to assess the legitimacy of using different tracking systems applied to the photovoltaic panels, for the city of Wroclaw (Poland), using 2 numerical tools: the CM SAF (Climate Monitoring Satellite Application Facility) and PVGIS (Photovoltaic Geographical Information System). In order to identify the solar irradiation, the CM-SAF database (based on the measurements of MFG – Meteosat First Generation – and MSG – Meteosat Second Generation – satellites) was utilised, while the PVGIS (Photovoltaic Geographical Information System) – to calculate the energy yield from PV panels. Particular attention was given to the optimisation of the annual tilt angle and the determination of the energy benefits from the implementation of the various sun tracking systems. Conducted studies showed that up to 30% more electricity yearly can be yielded after the replacement of PV cells with optimally fixed both azimuth and tilt angles by the 2-axis tracking system (179 kWh/m2 instead of 138 kWh/m2). Moreover, by the adequate decreasing of tilt angles in the summer time or obtaining the most favourable local solar exposure conditions, the supply curve of PV units may be significantly flattened, which may be beneficial when energy storage systems have low capacities.
Go to article

Bibliography

[1] McKinsey&Company, Assessment of Greenhouse Gas Emissions Abatement Potential in Poland by 2030. Summary of findings, Publications of McKinsey&Company (2009).

[2] Fraunhofer Institute for Solar Energy Systems, PSE AG, Photovoltaics Report, Materials of Fraunhofer ISE (2017).

[3] Ciechanowska M., Energy Policy of Poland by 2050, Nafta-Gaz (in Polish), vol. 11, pp. 839–842 (2014).

[4] Stowarzyszenie Branży Fotowoltaicznej – Polska PV, Development of the Polish PV market in 2010-2020, Główny Urząd Statystyczny (in Polish) (2016).

[5] Ministerstwo Gospodarki RP, Conclusions from forecast analyses for the purposes of Energy Policy of Poland until 2050. Annex 2, Ministerstwo Gospodarki RP (in Polish) (2015).

[6] Strupczewski A., Analysis and evaluation of electricity costs from various energy sources in Poland, National Centre of Nuclear Research (in Polish), Świerk (2015).

[7] Babatunde A.A., Abbasoglu S., Evaluation of field data and simulation results of a photovoltaic system in countries with high solar radiation, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 23, no. 6, pp. 1608–1618 (2015), DOI: 10.3906/elk-1402-313.

[8] Abdul Kareem M.S., Saravanan M., A new method for accurate estimation of PV module parameters and extraction of maximum power point under varying environmental conditions, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, no. 4, pp. 2028–2041 (2016), DOI: 10.3906/elk-1312-268.

[9] Khan J., Arsalan M.H., Solar power technologies for sustainable electricity generation – A review, Renewable & Sustainable Energy Reviews, vol. 55, pp. 414–425 (2016), DOI: 10.1016/j.rser.2015.10.135.

[10] Hafiz A.M., Abdelrahman M.E., Temraz H., Economic dispatch in power system networks including renewable energy resources using various optimization techniques, Archives of Electrical Engineering, vol. 70, no. 3, pp. 643–655 (2021), DOI: 10.24425/aee.2021.137579.

[11] Cholewiński M., Tomków Ł., Domestic hydrogen installation in Poland – technical and economic analysis, Archives of Electrical Engineering, vol. 64, no. 2, pp. 189–196 (2015), DOI: 10.1515/aee-2015-0016.

[12] Sharma H., Pal N., Kumar P., Yadav A., A control strategy of hybrid solar-wind energy generation system, Archives of Electrical Engineering, vol. 66, no. 2, pp. 242–251 (2017), DOI: 10.1515/aee- 2017-0018.

[13] Jastrzębska G., Solar cells. Construction, technology and application, Wydawnictwa Komunikacji i Łączności (in Polish) (2013).

[14] Ding R., Feng C., Wang D., Sun R., Wang L., Yuan S., Trade based on alliance chain in energy from distributed photovoltaic grids, Archives of Electrical Engineering, vol. 70, no. 2, pp. 325–336 (2021), DOI: 10.24425/aee.2021.136987.

[15] IHS Markit, Concentrated PV (CPV) Report – 2014, IHS Markit Company (2014).

[16] Huld T., Jäger Waldau A., Ossenbrink H., Szabo S., Dunlop E., Taylor N., Cost Maps for Unsubsidised Photovoltaic Electricity, Report number JRC 91937 Joint Research Centre (2014).

[17] Fraunhofer ISE, Current and Future Cost of Photovoltaics. Long-term Scenarios for Market Develop- ment, System Prices and LCOE of Utility-Scale PV Systems, Study on behalf of Agora Energiewende, 059/01-S-2015/EN (2015).

[18] Bukowski M., Śniegocki A., Megatrends – from acceptance to action, WiseEuropa – Warsaw Institute for Economic and European Studies (in Polish), ISBN 978-83-64813-30-6 (2017).

[19] Badescu V., Modeling Solar Radiation at the Earth’s Surface, Springer (2008), DOI: 10.1007/978-3-540-77455-6.

[20] The German Energy Society, Planning & Installing Photovoltaic Systems. A Guide for Installers, Architects and Engineers, Earthscal (2008), DOI: 10.4324/9781849776998.

[21] Šúri M., Remund J., Cebecauer T., Dumortier D., Wald L., Huld T., Blanc P., First Steps in the Cross- Comparison of Solar Resource Spatial Products in Europe, Proceedings of the EUROSUN 2008, 1����International Conference on Solar Heating, Cooling and Buildings, Lisbon, Portugal, JRC47255 (2008).

[22] Scharmer K., Greif J., The European Solar Radiation Atlas. Vol. 1: Fundamentals and Maps, École des Mines de Paris, ISBN 2-911762-21-5 (2000).

[23] NREL, Best Research-Cell Efficiency Chart, available on-line: https://www.nrel.gov/pv/cell-efficiency.html, accessed May 2021.

[24] International Renewable Energy Agency (IRENA), Solar Photovoltaics, Renewable Energy Technologies: Cost Analysis Series, Vol. 1: Power Sector, iss. 4/5 (2012).

[25] Saga T., Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Materials, vol. 2, pp. 96–102 (2010), DOI: 10.1038/asiamat.2010.82.

[26] Mengi O.O., Altas I.H., Fuzzy logic control for a wind/battery renewable energy production sys- tem, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 2, pp. 187–206 (2012), DOI: 10.3906/elk-1104-20.

[27] Buyukguzel B., Aksoy M., A current-based simple analog MPPT circuit for PV systems, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, no. 5, pp. 3621–3637 (2016), DOI: 10.3906/elk-1407-21.


[28] Hafez A.Z., Tilt and azimuth angles in solar energy applications – A review, Renewable & Sustainable Energy Reviews, vol. 77, pp. 147–168 (2017), DOI: 10.1016/j.rser.2017.03.131.

[29] Seddjar A., Kerrouche K.D.E., Wang L., Simulation of the proposed combined Fuzzy Logic Control for Maximum Power Point Tracking and Battery Charge Regulation used in CubeSat, Archives of Electrical Engineering, vol. 69, no. 3, pp. 521–543 (2020), DOI: 10.24425/aee.2020.133916.

[30] Komarnicki P., Energy storage systems: power grid and energy market use cases, Archives of Electrical Engineering, vol. 65, no. 3, pp. 495–511 (2016), DOI: 10.1515/aee-2016-0036.

[31] Michalak P., Atmospheric transparency coefficient at selected stations in the Southern and Eastern Poland, Polska Energetyka Słoneczna (in Polish), vol. 2–4, pp. 23–26 (2011).

[32] Marchel P., Paska J., Modeling of photovoltaic power plants reliability, Rynek Energii (in Polish, abstract in English), vol. 111, no. 2, pp. 81–86 (2014).

[33] Cooper P.I., The absorption of radiation in solar stills, Solar Energy, vol. 12, pp. 333–346 (1969), DOI: 10.1016/0038-092X(69)90047-4.

[34] Shen Ch., He Y.-L., Liu Y.-W., Tao W.-Q., Modelling and simulation of solar radiation data processing with Simulink, Simulation Modelling Practice and Theory, vol. 16, pp. 721–735 (2008), DOI: 10.1016/j.simpat.2008.04.013.

[35] Kamali G.A., Moradi I., Khalili A., Estimating solar radiation on tilted surfaces with various orientations: a study case in Karaj (Iran), Theoretical and Applied Climatology, vol. 84, pp. 235–241 (2006), DOI: 10.1007/s00704-005-0171-y.

[36] Polski Komitet Normalizacyjny, EN 61215-1:2016. Terrestrial photovoltaic (PV) modules. Design qualification and type approval. Test requirements, PKN (2016).

[37] Photovoltaic Geographical Information System (PVGIS), available on-line: https://ec.europa.eu/ jrc/en/pvgis, accessed April 2018.

[38] Amillo A.G., Huld T., Müller R., A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation, Remote Sensing, vol. 6, pp. 8165–8189 (2014), DOI: 10.3390/rs6098165.

[39] Shiva Kumar B., Sudhakar K., Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India, Energy Reports, vol. 1, pp. 184–192 (2015), DOI: 10.1016/j.egyr.2015.10.001.

[40] Ministerstwo Klimatu i Środowiska, Energy Policy of Poland by 2040. Annex to the Resolution No. 22/2021 of the Council of Ministers from the 2nd February 2021, Ministerstwo Klimatu i Środowiska RP (in Polish) (2021).

[41] Wood Mackenzie, US solar PV system pricing: H2 2020, Wood Mackenzie (2020).


Go to article

Authors and Affiliations

Maciej Cholewiński
1
ORCID: ORCID
Jean-Marc Fąfara
2
ORCID: ORCID

  1. Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Cryogenics and Aviation Engineering, Poland
  2. Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article is devoted to an analytical review of the situation in the energy sector of Ukraine, taking into account constructive changes in the connection of the Ukrainian energy system to ENTSO-E and the destructive situation caused by industrial infrastructure failures and economic renewal. It focuses on Ukraine in the context of the principles of decentralization in the direction of significantly increasing the net cost of microgeneration, decarbonization and the transition to “green” energy. The national resource potential of energy-efficient and energy-saving technologies is systematized and the applied recommendations are provided to support state and local trends in energy sector development, namely energy storage projects, distributed generation and microgeneration based on Net Energy Metering to support small projects that solve energy problems. Included are institutional proposals for the establishment of the Agency for Decarbonization in Ukraine for the “green” transition, with broad powers of communication and the ability to make decisions on reducing carbon emissions in all areas. The possibility and expediency of using the concept of innovation is considered both from the global point of view of Ukrainian industry (with the potential prospect of using Ukraine’s industrial and logistics infrastructure as a mega-industrial park for the EU) and in the local sense of national energy, including improvements to the EU’s energy balance. It has been proven that the use of the nearshoring mechanism in Ukrainian industry in general, and in the energy sector in particular, can improve Europe’s energy balance, which has deteriorated over the past five years. Thus, the negative trend of the EU energy balance in thousands of tons of oil equivalent and in percentage terms was demonstrated. To improve the situation, the forecast of energy prices for individual EU countries was calculated taking into account Ukraine’s integration into the European energy system. The analysis and calculations revealed a potentially possible level of price reductions in some EU countries up to 20%. Recommendations are for improving energy-management efficiency at the regional level in particular, ensuring transparency in the development of renewable energy sources, using significant national potential of biofuels and increasing natural gas production, developing a business model of gas distribution center in Western Ukraine, which will be part of national gas distribution system and the European energy market.
Go to article

Authors and Affiliations

Oksana Borodina
1
ORCID: ORCID
Hanna Bratus
2
ORCID: ORCID
Viktoriia Udovychenko
3
ORCID: ORCID
Sylwester Kaczmarzewski
4
ORCID: ORCID
Valentyna Kostrychenko
5
ORCID: ORCID
Viktor Koval
6
ORCID: ORCID

  1. Institute of Industrial Economics of the National Academy of Sciences of Ukraine, Ukraine
  2. Interregional Academy of Personnel Management, Ukraine
  3. Taras Shevchenko National University of Kyiv, Ukraine
  4. Mineral and Energy Economy Research Institute Polish Akademy of Sciences, Kraków, Poland
  5. National University of Water and Environment Engineering, Ukraine
  6. National Academy of Sciences of Ukraine, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The aim of the article is to consider current global and European trends in ensuring a sufficient level of energy efficiency, to provide an analysis of the institutional environment for energy security, and the development and justification of a conceptual and analytical model of energy generation and consumption at the regional level in decentralization reform in Ukraine. The current trends of world energy consumption are illustrated, the forecast of renewable energy development is built and an analysis of energy efficiency of the national economy is performed. The article presents a study of the formation of an integrated municipal energy-management system of Ukrainian communities and municipalities depending on their urbanization and offers the use of conceptual analytical model of generation-consumption. A number of normative and organizational-institutional proposals on the standardization of energy-efficiency improvement processes are provided. Analysis of the energy efficiency of communities can be modeled at the conceptual level with the study using an analytical model: a) energy-efficiency factors of this model, financial instruments for its effective functioning as a mechanism of interest budget revenues and specialized funds functional dependence of the target function of the energy generation-consumption model, taking into account the generation methods and the main consumers at the appropriate levels; b) the risks and shortcomings of this process, which propose a number of regulatory and institutional changes to improve the effectiveness of effective energy efficiency policies of communities and energy security of the state on the basis of energy cooperation and organization of the biofuel exchange. The model of organization and functioning of the cooperative for generation and consumption of solar energy, which is based on the regulatory framework, is represented as a model structural and functional solution. This allowed the development of scientific and applied recommendations for improving the legal provisions, which would allow the community to become an effective player in the wholesale energy market, selling it at a “green” tariff.
Go to article

Authors and Affiliations

Oksana Borodina
1
ORCID: ORCID
Halyna Kryshtal
2
ORCID: ORCID
Mira Hakova
3
ORCID: ORCID
Tetiana Neboha
4
ORCID: ORCID
Piotr Olczak
5
ORCID: ORCID
Victor Koval
6
ORCID: ORCID

  1. Institute of Industrial Economics of the National Academy of Sciences of Ukraine
  2. Interregional Academy of Personnel Management, Ukraine
  3. Dnipro National University, Ukraine
  4. State Organization “Institute of Market and Economic & Ecological Researches of the National Academy of Sciences of Ukraine”, Ukraine
  5. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
  6. National Academy of Sciences of Ukraine, Ukraine

This page uses 'cookies'. Learn more