Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study focused on the effect of heavy metal cobalt ions (at concentrations of 1–1000 ppm) on the development and enzymatic activity of four entomopathogenic fungi: Beauveria bassiana, Beauveria brongniartii, Isaria fumosorosea and Metarhizium robertsii, commonly used in biological plant protection. It was found that each of the tested species of fungi reacted individually to contact with the Co2+ ions at their various concentrations. Depending on the variants of the experiment carried out, there were changes in the development of the mycelia (mainly growth inhibition) and their morphological features (color and structure) in comparison to the control samples. Co2+ ions had a fungistatic effect on all fungal strains, whereas a fungicidal effect was noted at concentrations of 750 ppm and 1000 ppm against M. robertsii and I. fumosorosea, respectively. In addition, there was a discrepancy in enzymatic activity between the tested fungal species developing in the medium with varying concentrations of metal salt. The inhibitory effect of Co2+ ions on lipase production was observed in I. fumosorosea. Protease production was stimulated in B. bassiana at all Co2+ concentrations, whereas in M. robertsii this effect was noted at 1 ppm. The changing dynamics of extracellular fungal hydrolases, due to the action of Co2+ ions, may translate into the role of these microorganisms in the processes of insect pathogenesis. This work suggests that severe pollution of the environment by cobalt could be a restrictive factor for the development and pathogenicity of entomopathogenic fungi and must be taken into account for their successful application in biological plant protection.

Go to article

Authors and Affiliations

Łukasz Łopusiewicz
Kinga Mazurkiewicz-Zapałowicz
Cezary Tkaczuk
Artur Bartkowiak
Download PDF Download RIS Download Bibtex

Abstract

In the years 2002–2004 strains of Bacillus thuringiensis and 37 species of entomopathogenic fungi were isolated and identified in the Polish and Belarussian parts of Białowieża Forest (BF). Mitosporic fungi and bacteria dominated in litter sperficial soil layer, forest, litter and floor vegetation whereas entomophtoralen fungi prevailed in bushy undergrowth layers and tree crowns. The dominant species Beauveria bassiana was observed in forest floor, subcortical habitats on dead trees, meadows and rushes. The species Entomophthora israelensis, Beauveria cf. bassiana, Paecilomyces suffultus and P. tenuipes were for the first time described as insect pathogens in BF. Entomophthorales seem to hold much greater part than mitosporic forms in the whole diversity of entomopathogenic fungi. Relatively rich sets of these fungi recognised in BF during last decades confirm the predestination of this area as highly significant refuge for other groups of arthropod pathogens, and it should encourage scientists to widen their research and contribute to a rather scarce knowledge in this field.

Go to article

Authors and Affiliations

Danuta Sosnowska
Stanisław Bałazy
Ludmila Prishchepa
Natalia Mikulskaya
Download PDF Download RIS Download Bibtex

Abstract

The effects of two native isolates of Beauveria bassiana, AM-118 and BB3, were evaluated on the predatory coccinellid, Cryptolaemus montrouzieri by measuring several developmental parameters and intermediary metabolism. Treatment with both isolates significantly increased the length of each developmental stage compared to the control except for the eggs and adults. The preovipositional period in the adults treated with BB3 significantly increased compared to those treated with AM-118 and the control. Other parameters, including longevity, length of oviposition period and fecundity, showed no significant differences between treatments. Although there were no significant differences in the parameters of net reproduction rate ( R0) and gross reproduction rate ( GRR) between the control and fungal treated C. montrouzieri, the intrinsic rate of population increase ( r) and finite rate of population (λ) for the control treatments were significantly higher. The activities of both aminotransferases in the larvae and the adults treated with both isolates significantly increased 96 hours post-treatment compared to the control. Although similar results were recorded for acid phosphatase activity, alkaline phosphatase activity showed no significant differences in larvae and adults between the treatments. The amount of protein significantly decreased in the larvae and the adults treated with both isolates after 96 hours, while the amount of triglyceride significantly reduced in the treated larvae compared to control. No significant differences were observed in adults. Our results indicated that both native isolates of B. bassiana may affect life fitness of C. montrouzieri but isolate AM-118 was more compatible than BB3.
Go to article

Authors and Affiliations

Sara Aghaeepour
1
Arash Zibaee
1
Samar Ramzi
1 2
Hassan Hoda
3

  1. Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
  2. Tea Research Center, Horticulture Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Lahijan, Iran
  3. Department of Biological Control, Iranian Institute of Plant Protection Agricultural Research, Education and Extension Organization (AREEO), Amol, Iran
Download PDF Download RIS Download Bibtex

Abstract

The excessive use of chemical products to control thrips and the tomato spotted wilt virus (TSWV) is not only harmful to human health, the environment, and biodiversity, but also the resistance these generate in insects turns them inefficient in the long run. Consequently, to achieve sustainable and residue-free production, control alternatives must be explored. This work proposes the use of Beauveria bassiana (BB) in combination with inter-row cover (IC) to reduce the population of thrips and the incidence of TSWV on bell pepper. For this purpose, a trial was carried out in a bell pepper greenhouse, consisting of four randomly distributed treatments with four repetitions of 66 plants each. The treatments assayed were: T (without BB inoculation or IC), TC (without BB inoculation and with IC), B (inoculated with BB), and BC (inoculated with BB and IC). The B. bassiana CEP147 strain was used based on its effectiveness in previous laboratory tests. After detecting one thrips per flower, five foliar spray applications were made at weekly intervals. The trial lasted 4 months. During this time, the number of thrips in the three central plants of each repetition, the presence of symptoms compatible with TSWV, as well as the number of fruits, and their weight, length, width and health were monitored weekly. Between the fourth and sixth weeks after the last application, a significant reduction in the population of total thrips (nymphs + + adults) was observed in both treatments B and BC compared to T and TC. In addition, plants with symptoms compatible with TSWV were very scarce, and the fruits showed significant differences in their quality parameters, producing the longest and heaviest in the BC treatment. The results showed that combining biological and cultural control makes sustainable pepper production possible.
Go to article

Authors and Affiliations

María Emilia dos Santos Domingues
1
ORCID: ORCID
Mariana Del Pino
2
ORCID: ORCID
Andrea Vanesa Toledo
3
ORCID: ORCID

  1. Curso de Prácticas Profesionales I, Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
  2. Curso de Horticultura y Floricultura, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Buenos Aires, Argentina
  3. Centro de Investigaciones de Fitopatología (CIDEFI-CICBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Buenos Aires, Argentina
Download PDF Download RIS Download Bibtex

Abstract

As alternatives to chemical insecticides, entomopathogenic fungi or wild plants and their secondary metabolites are being used. These biocontrol agents are significant because of their biodegradability, specificity, eco-friendliness, and utility as agents to reduce insecticide resistance. In this study five ethyl acetate extracts of locally isolated fungal strains ( Talaromyces atroroseus, Fusarium chlamydosporum, Talaromyces stipitatus, Trichoderma lixii, Beauveria bassiana) as well as alkaloid extract of Haloxylon salicornicum were extracted and investigated as biocontrol agents against cotton mealybug Phenacoccus solenopsis. The results indicated that all extracts had toxic effects against P. solenopsis except the extract of T. stipitatus. The LC50 values and toxicity index indicated that the alkaloid extract of H. salicornicum was the most toxic one (26 ppm) after 72 hours of treatment followed by the extracts of F. chlamydosporum (77 ppm), then B. bassiana (84 ppm) and T. lixii (118 ppm). On the other hand, there were significant changes in tested insect enzyme activities (amylase, lipase, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and acetyl choline esterase (AchE) as well as total proteins and lipids in the insects treated with the alkaloid extract of H. salicornicum, and ethyl acetate extracts of F. chlamydosporum and B. bassiana after 24 hours of treatment compared to the control. GC/MS analyses of fungal extracts indicated that there were some bioactive compounds like hexadecanoic acid, octadecanoic acid, and tetradecanoic acid. In addition, the anabasine compound was found as a major constituent of the alkaloid extract of H. salicornicum and identified by 1H NMR and GC/MS analysis. In conclusion, according to this study, it was recommended that the alkaloid extract of H. salicornicum and the ethyl acetate extracts of F. chlamydosporum, B. bassiana, and T. lixii be used as alternatives to chemical insecticides for controlling the cotton mealybug P. solenopsis.
Go to article

Authors and Affiliations

Reda R.H. Abdullah
1
Ahmed Ramadan El-Rokh
2

  1. Cotton Pesticides Evaluation Research Department, Plant Protection Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
  2. Piercing Sucking Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

In order to use entomopathogenic fungi (EPF) as biological control agents, it is necessary to mass produce the EPF in an economical and cost-effective manner. Currently, the mass production of EPF is carried out mainly in two ways: solid-state fermentation in which the aerial conidia are produced, and liquid fermentation in which the blastospores and submerged conidia are produced. This research compares the survival of Beauveria bassiana A1-1spores from solid and liquid culture media, after 0, 3, 6 and 9 months of storage at room temperature (25 ± 5°C) and in the refrigerator (4°C). Furthermore, it compares the pathogenicity of spores immediately after production and after 9 months of storage on third nymphs of greenhouse whitefly, Trialeurodes vaporariorum. The aerial conidia and blastospores were slightly more virulent than the submerged conidia on whitefly nymphs. In laboratory bioassays, blastospores indicated more pathogenicity on nymphs than submerged conidia, even though there was no significant difference in the pathogenicity of the spores produced in liquid culture media in greenhouse bioassays. Moreover, survival of the aerial conidia at a low temperature (4°C) was higher than that kept at room temperature (25 ± 5°C). This storage temperature comparison revealed a positive effect on the stability and survival of blastospores and submerged conidia as well. Meanwhile, the survival of spores drastically decreased after 3 months of storage at room temperature.
Go to article

Authors and Affiliations

Saeedeh Javar
1
Shahram Farrokhi
2
Shahram Naeimi
2
Maryam Kalantari Jooshani
2

  1. Plant Protection Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
  2. Biological Control Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
Download PDF Download RIS Download Bibtex

Abstract

The entomopathogenic fungi (EPF) are characterized as fungi with various functions and numerous mechanisms of action. The ability to establish themselves as beneficial endophytes provides a sound ground for their exploitation in crop production and protection. The purpose of this study was to evaluate the entomopathogenic strains of Beauveria bassiana and Mertarhizium anisopliae for their potential to colonize cucumber plants under natural environmental conditions in non-sterile substrate. Seed submersion in conidial suspension resulted in systemic colonization of cucumber plants 28 days post-inoculation. Scanning electron microscope micrographs demonstrated that conidia of both fungal genera have adhered, germinated and directly penetrated seed epidermal cells 24 hr post-submersion. Treated with EPF cucumber seeds resulted seedlings tissues of which contained a significantly higher amount of total phenolic compounds and unchanged amounts of chlorophylls. There was a significant negative effect of endophytic colonization on the Aphis gossypii population size after 5 days of exposure as well as a positive effect on cucumber growth and development 7 weeks post-inoculation. We suggest that reduction of A. gossypii population on mature Cucumis sativus plants is caused via an endophyte-triggered improvement of plant’s physiological parameters such as enhanced plant growth with subsequent increase in plant resistance through augmented production of phenolic compounds.
Go to article

Bibliography


Ainsworth E.A., Gillespie K.M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2: 875−877. DOI: 10.1038/nprot.2007.102
Akello J., Sikora R. 2012. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biological Control 61: 215−221. DOI: 10.1016/J.BIOCONTROL.2012.02.007
Akutse K., Maniania N., Fiaboe K., Van Den Berg J., Ekesi S. 2013. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology 6: 293−301. DOI: https://doi.org/10.1016/j.funeco.2013.01.003
Bajan C., Tyrawska D., Popowska-Nowak E., Bienkowski P. 1998. Biological response of Beauveria bassiana strains to heavy metal pollution and their accumulative ability. Ecological Chemistry and Engineering 5 (8−9): 676−685.
Bamisile B.S., Dash C.K., Akutse K.S., Keppanan R., Afolabi O.G., Hussain M., Qasim M., Wang L. 2018. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiological Research 217: 34–50. DOI: https://doi.org/10.1016/j.micres.2018.08.016
Barelli L., Moreira C.C., Bidochka M.J. 2018. Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology 164: 1531–1540. DOI: 10.1099/mic.0.000729.
Barnes J.D., Balaguer L., Manrique E., Elvira S., Davison A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environment 32: 83–100. DOI: http://dx.doi.org/10.1016/0098-8472(92)90034-Y
Behie S.W., Jones S.J., Bidochka M.J. 2015. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology 13: 112–119. DOI: 10.1016/J.FUNECO.2014.08.001
Blackman R.L. 2010. Aphids − Aphidinae (Macrosiphini). Handbook for the Identification of British Insects 2 (7): 1−413.
Blackman R.L., Eastop V.F. 2000. Aphids on the world’s crops: An identification and information guide. John Wiley and Sons, Chichester, UK. XF2006251066.
Braniša J., Jenisova Z., Porubska M., Jomova K., Valko M. 2014. Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. Journal of Microbiology, Biotechnology and Food Sciences 3 (2): 61−64.
Carriere Y., Bouchard A., Bourassa S., Brodeur J. 1998. Effect of endophyte incidence in perennial ryegrass on distribution, host choice, and performance of the hairy chinch bug (Hemiptera: Lygaeidae). Economic Entomology 91: 324–328. DOI: https://doi.org/10.1093/jee/91.1.324
Castillo-Lopez D., Zhu-Salzman K., Ek-Ramos M.J., Sword G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 9 (8): e103891. DOI: 10.1371/journal.pone.0103891
Chung I.M., Park Chun J.C., Yun S.J. 2003. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Science 164: 103–109. DOI: 10.1016/S0168-9452(02)00341-2
Clay K. 1996. Interactions among fungal endophytes, grasses and herbivores. Researches on Population Ecology 38 (2): 191–201. DOI: https://doi.org/10.1007/BF02515727
Clay K., Marks S., Cheplick G.P. 1993. Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74 (6): 1767–1777. DOI: https://doi.org/10.2307/1939935
Clifton E.H., Jaronski S.T., Coates B.S., Hodgson E.W., Gassmann A.J. 2018. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE 13 (3): e0194815. DOI: https://doi.org/10.1371/journal.pone.0194815
Daayf F., Ongena M., Boulanger R., El Hadrami I., Belanger R.R. 2000. Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew infected plants with extracts of Reynoutria sachalinensis. Journal of Chemical Ecology 26 (7): 1579−1593. DOI: https://doi.org/10.1023/A:1005578510954
Diaz Napal G.N., Defago M., Valladares G., Palacios S. 2010. Response of Epilachna paenulata to two flavonoids, pinocembrin and quercetin, in a comparative study. Journal of Chemical Ecology 36 (8): 898–904. DOI: 10.1007/s10886-010-9823-1
Dugassa-Gobena D., Raps A., Vidal S. 1996. Einfluß von Acremonium strictum auf den Sterolhaushalt von Pflanzen: Ein möglicher Faktor zum veränderten Verhalten von Herbivoren. Mitteilungen aus der Biologischen Bundesanstalt fur Land- und Forstwirtschaft 321: 299.
Furstenberg-Hagg J., Zagrobelny M., Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences 14 (5): 10242–10297. DOI: 10.3390/ijms140510242
Gange A.C., Koricheva J., Currie A.F., Jaber L.R., Vidal S. 2019. Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Pathologist 223 (4): 2002–2010. DOI: https://doi.org/10.1111/nph.15859
Gawel N.J., Jarret R.L. 1991. A modified CTAB DNA extraction procedure for musa and ipomoea. Plant Molecular Biology Reporter 9 (3): 262−266. DOI: 10.1007/BF02672076
Gissella M.V., David B.O., James R.B. 2006. Efficacy assessment of Aphidius colemani (Hymenoptera: Braconidae) for suppression of Aphis gossypii (Homoptera: Aphididae) in greenhouse-grown chrysanthemum. Economic Entomology 99 (4): 1104–1111. DOI: 10.1603/0022-0493-99.4.1104
Godfrey L.D., Rosenheim J.A., Goodell P.B. 2000. Cotton aphid emerges as major pest in SVJ cotton. California Agriculture 54 (6): 32–34. DOI: 10.3733/ca.v054n06p26
Gonzalez-Mas N., Sanchez-Ortiz A., Valverde-Garcia P., Quesada- Moraga E. 2019. Effects of endophytic entomopathogenic ascomycetes on the life-history traits of Aphis gossypii Glover and its interactions with melon plants. Insects 10 (6): 165. DOI: 10.3390/insects10060165
Grace S.C., Logan B.A. 2000. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philosophical Transactions: Biological Sciences 355 (1402): 1499−1510. DOI: 10.1098/rstb.2000.0710
Gurulingappa P., McGee P.A., Sword G. 2011. Endophytic Lecanicillium lecnii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop Protection 30 (3): 349−353. DOI: 10.1016/J.CROPRO.2010.11.017
Gurulingappa P., Sword G.A., Murdoch G., McGee P.A. 2010. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Bio- Control 55 (1): 34–41. DOI: https://doi.org/10.1016/j.biocontrol.2010.06.011
Hermoso de Mendoza A., Belliure B., Carbonell E.A., Real V. 2001. Economic thresholds for Aphis gossypii (Hemiptera: Aphididae) on Citrus clementina. Journal of Economic Entomology 94 (2): 439–444. DOI: https://doi.org/10.1603/0022-0493-94.2.439
Humber R.A. 1997. Fungi: identification. p. 153–185. In: “Manual of Techniques in Insect Pathology” (L.A. Lacey, ed.). Academic Press, London. DOI: https://doi.org/10.1016/B978-012432555-5/50011-7
Ibrahim L., Hamieh A., Ghanem H., Ibrahim S. 2011. Pathogenicity of entomopathogenic fungi from Lebanese soils against aphids, whitefly and non-target beneficial insects. International Journal of Agriculture Sciences 3 (3): 156−164. DOI: 10.9735/0975-3710.3.3.156-164
Ibrahim L., Laham L., Tomma A., Ibrahim S. 2015. Mass production, yield, quality, formulation and efficacy of entomopathogenic Metarhizium anisopliae conidia. British Journal of Applied Sciences and Technology 9 (5): 427−440. DOI: 10.9734/bjast/2015/17882
Ibrahim L., Spackman V.M.T., Cobb A.H. 2001. An investigation of wound healing in sugar beet roots using light and fluorescence microscopy. Annals of Botany 88 (2): 313−320. DOI: https://doi.org/10.1006/anbo.2001.1461
Jaber L.R., Enkerli J. 2016. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control 103: 187–195. DOI: https://doi.org/10.1016/j.biocontrol.2016.09.008
Jaber L.R., Enkerli J. 2017. Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology 27 (1): 28–41. DOI: https://doi.org/10.1080/09583157.2016.1243227
Jaber L.R., Vidal S. 2010. Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecological Entomology 35 (1): 25–36. DOI: https://doi.org/10.1111/j.1365-2311.2009.01152.x
Jensen R.E., Enkegaard A., Steenberg T. 2019. Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS ONE 14 (10): 1−13, e0223616. DOI: https://doi.org/10.1371/journal.pone.0223616
Kabaluk J.T., Ericsson J.D. 2007. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agronomy Journal 99 (5): 1377−1381. DOI: 10.2134/agronj2007.0017N
Kumar P.K.R., Hemanth G., Niharika P.S., Kolli S.K. 2015. Isolation and identification of soil mycoflora in agricultural fields at Tekkali Mandal in Srikakulam District. International Journal of Advances in Pharmacy, Biology and Chemistry 4 (2): 484−490.
Lacey L.A. 2016. Entomopathogens used as microbial control agents. p. 3−12. In: “Microbial Control of Insect and Mite Pests” (L.A. Lacey, ed.). Amsterdam: Elsevier/Academic Press. DOI: https://doi.org/10.1016/B978-0-12-803527- 6.00001-9
Lee S.B., Milgroom M.G., Taylor J.W. 1988. A rapid, high yield mini-prep method for isolation of total genomic DNA from fungi. Fungal Genetics Newsletter 35: 23–24. DOI: https://doi.org/10.4148/1941-4765.1531
Liao J., Li X., Wong T.Y., Wang J.J., Khor C.C., Tai ES., Aung T., Teo Y.Y., Cheng C.Y. 2014. Impact of measurement error on testing genetic association with quantitative traits. PloS ONE 9 (1): e87044. DOI: https://doi.org/10.1371/journal.pone.0087044
Liao X., Lovett B., Fang W., St. Leger R.J. 2017. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology 163 (7): 980–991. DOI: 10.1099/mic.0.000494
Lingg A.J., Donaldson M.D. 1981. Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. Journal of Invertebrate Pathology 38 (2): 191−200. DOI: https://doi.org/10.1016/0022-2011(81)90122-1
Lopez D.C., Zhu-Salzman K., Ek-Ramos M.J., Sword G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS One 9: e103891. DOI: 10.1371/journal.pone.0104342
Maniania N.K., Sithanantham S., Ekesi S., Ampong-Nyarko K., Baumgärtner J., Löhr B., Matoka C.M. 2003. A field trial of the entomogenous fungus Metarhizium anisopliae for control of onion thrips, Thrips tabaci. Crop Protection 22 (3): 553–559. DOI: https://doi.org/10.1016/S0261-2194(02)00221-1
Matallanas B., Lantero E., M’Saad M., Callejas C., Ochando M.D. 2013. Genetic polymorphism at the cytochrome oxidase I gene in mediterranean populations of Batrocera oleae (Diptera: Tephritidae). Applied Entomology 137 (8): 624–630. DOI: https://doi.org/10.1111/jen.12037
McKinnon A.C., Saari S., Moran-Diez M.E., Meyling N.V., Raad M., Glare T.R. 2017. Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl 62: 1–17. DOI: 10.1007/s10526-016-9769-5.
Omkar P.A. 2004. Predaceous coccinellids in India: predatorprey catalogue. Oriental Insects 38 (1): 27–61. DOI: 10.1080/00305316.2004.10417373
Ownley B.H., Dee M.M., Gwinn K. 2008. Effect of conidial seed treatment rate of entomopathogenic Beauveria bassiana 11-98 on endophytic colonization of tomato seedlings and control of Rhizoctonia disease. Phytopathology 98 (6): S118−S118.
Pańka D., Piesik D., Jeske M., Musiał N., Koczwara K. 2013. Production of phenolic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a defense reaction towards infection by Fusarium poae and Rhizoctonia solani. p. 124−125. In: “Endophytes for Plant Protection: the State of the Art” (C. Schneider, C. Leifert, F. Feldmann, eds.). Deutsche Phytomedizinische Gesellschaft, Braunschweig.
Pathan A.K., Bond J., Gaskin R.E. 2010. Sample preparation for SEM of plant surfaces. Materials Today 12 (1): 32−43. DOI: 10.1016/S1369-7021(10)70143-7
Perea-Domínguez X.P., Hernández-Gastelum L.Z., Olivas- -Olguin H.R., Espinosa-Alonso L.G., Valdez-Morale M., Medina-Godoy S. 2018. Phenolic composition of tomato varieties and an industrial tomato by-product: free, conjugated and bound phenolics and antioxidant activity. Journal of Food Science and Technology 55 (9): 3453–3461. DOI: https://doi.org/10.1007/s13197-018-3269-9
Pereira R.M., Stimac J.L., Alves S.B. 1993. Soil antagonism affecting the dose − response of workers of the red imported fire ant, Solenopsis invicta, to Beauveria bassiana conidia. Journal of Invertebrate Pathology 61 (2): 156−161. DOI: https://doi.org/10.1006/jipa.1993.1028
Petrini O., Fisher P.J. 1987. Fungal endophytes in Salicornia perennis. Transactions of the British Mycological Society 87 (4): 647−651. DOI: https://doi.org/10.1016/S0007-1536-(86)80109-7
Pineda A., Zheng S.-J., van Loon J.J.A., Pieterse C.M.J., Dicke M. 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science 15 (9): 507–514. DOI: https://doi.org/10.1016/j.tplants.2010.05.007
Powell W.A., Klingeman W.E., Ownley B.H., Gwinn K.D. 2009. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Entomological Science 44 (4): 391−396. DOI: https://doi.org/10.18474/0749-8004-44.4.391
Rajab L., Ahmad M., Gazal I. 2020. Endophytic establishment of the fungal entomopathogen, Beauveria bassiana (Bals.) Vuil., in cucumber plants. Egyptian Journal of Biological Pest Control 30: 143. DOI: https://doi.org/10.1186/s41938-020-00344-8
Raps A., Vidal S. 1998. Indirect effects of an unspecialized endophytic fungus on specialized plant-herbivorous insect interactions. Oecologia 114 (4): 541–547. DOI: 10.1007/s004420050478
Rebijith K.B., Asoka R., Krishna V., Krishna Kumar N.K., Ramamurth V.V. 2012. Development of species-specific markers and molecular differences in mitochondrial and nuclear DNA sequences of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae). Florida Entomologist 95 (3): 674−682. DOI: 10.1653/024.095.0318
Rodriguez R.J., White Jr. J.F., Arnold A.E., Redman R.S. 2009. Fungal endophytes: Diversity and functional roles. New Phytologist 182 (2): 314–330. DOI: http://dx.doi.org/10.1111/j.1469-8137.2009.02773.x
Russo M.L., Pelizza S.A., Cabello M.N., Stenglein S.A., Scorsetti A.C. 2015. Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Science and Technology 25 (4): 475−480. DOI: 10.1080/09583157.2014.982511
Saari S., Helander M., Faeth S.H. 2010. The effects of endophytes on seed production and seed predation of tall fescue and meadow fescue. Microbial Ecology 60: 928–934. DOI: https://doi.org/10.1007/s00248-010-9749-8
Saikkonen K., Lehtonen P., Helander M., Koricgeva J., Faeth S.H. 2006. Model systems in ecology: dissecting the endophyte grass literature. Trends in Plant Science 11 (9): 428−433. DOI: 10.1016/j.tplants.2006.07.001
Sánchez-Rodríguez A.R., Del Campillo M.C., Quesada-Moraga E. 2015. Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Scientia Horticulturae 197: 193–202. DOI: https://doi.org/10.1016/j.scienta.2015.09.029
Sasan R.K., Bidochka M.J. 2012. The insect-pathogenic fungus Metarhezium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany 99 (1): 101−107. DOI: 10.3732/ajb.1100136
Schulz B., Boyle C. 2005. Fungal endophyte continuum. Mycological Research 109 (6): 661–686. DOI: https://doi.org/10.1017/S095375620500273X
Shaalan R., Ibrahim L. 2019. Entomopathogenic fungal endophytes: can they colonize cucumber plants? p. 853−860. In: “Book of Proceedings of the IX International Scientific Agriculture Symposium AGROSYM 2018”. 04−07 October 2018, Bosnia and Herzegovina.
Shi X.G., Zhu Y.K., Xia X.M., Qiao K., Wang HY., Wang KY. 2012. The mutation in nicotinic acetylcholine receptor β1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover). Journal of Food, Agriculture and Environment 10 (2): 1227−1230.
Skinner M., Parker B.L., Kim J.S. 2014. Role of entomopathogenic fungi in integrated pest management. p. 169–191. In: “Integrated Pest Management: Current Concepts and Ecological Perspectives” (D.P. Abrol, ed.). Academic Press, San Diego. DOI: https://doi.org/10.1016/B978-0-12-398529-3.00011-7
Song H., Chen J., Staub J., Simon P. 2010. QTL analyses of orange color and carotenoid content and mapping of carotenoid biosynthesis genes in cucumber (Cucumis sativus L.). Acta Horticulturae 871: 607−614. DOI: 10.17660/ACTAHORTIC.2010.871.83
Stoetzel M.B., Miller G.L., O’Brien P.J., Graves J.B. 1996. Aphids (Homoptera: Aphididae) colonizing cotton in the United States. Florida Entomologist 79 (2): 193−205. DOI: 10.2307/3495817
Tefera T., Vidal S. 2009. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54: 663−669. DOI: 10.1007/s10526-009-9216-y
Tucker S.L., Talbot N.J. 2001. Surface attachment and pre- -penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology 39: 385–417. DOI: 10.1146/annurev.phyto.39.1.385
Ullrich C.I., Koch E., Matecki C., Schäfer J., Burkl T., Rabenstein F., Kleespies R.G. 2017. Detection and growth of endophytic entomopathogenic fungi in dicot crop plants. Journal für Kulturpflanzen 69 (9): 291–302. DOI: 10.1399/JfK.2017.09.02
Umboh S.D., Salaki C.L., Tulung M., Mandey L.C., Maramis R.T.D. 2016. The isolation and identification of fungi from the soil in gardens of cabbage were contaminated with pesticide residues in subdistrict Modoinding. International Journal of Research in Engineering and Science 4 (7): 25−32.
Vandre W. 2013. Cucumber production in greenhouses. University of Alaska Fairbanks Cooperative Extension Service. Available on: www.uaf.edu/ces
Vega F.E. 2018. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110 (1): 4–30. DOI: https://doi.org/10.1080/00275514.2017.1418578
Vega F.E., Goettel M.S., Blackwell M., Chandler D., Jackson M.A., Keller S., Koike M., Maniania N.K., Monzón A., Ownley B.H. et al. 2009. Fungal entomopathogens: New insights on their ecology. Fungal Ecology 2 (4): 149–159. DOI: https://doi.org/10.1016/j.funeco.2009.05.001
Vega F.E., Meyling N.V., Luangsa-Ard J.J., Blackwell M. 2012. Fungal entomopathogens. p. 171–220. In: “Insect Pathology” 2nd ed. (F.E. Vega, H.K. Kaya, eds.). Academic Press, San Diego. DOI: 10.1016/B978-0-12-384984-7.00006-3
Vega F.E., Posada F., Aime M.C., Pava-Ripolli M., Infante F., Rehner S.A. 2008. Entomopathogenic fungal endophytes. Biological Control 46 (1): 72–82. DOI: https://doi.org/10.1016/j.biocontrol.2008.01.008
Vidal S., Jaber L. 2015. Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science 109 (1): 46−54. Vincent C., Goettel M.S., Lazarovits G. (eds.) 2007. Biological Control: A Global Perspective. CAB International/ AAFC, Wallingford, United Kingdom. DOI: 10.1079/9781845932657.0000
Wagner B.L., Lewis L.C. 2000. Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology 66 (8): 3468−3473. DOI: 10.1128/aem.66.8.3468-3473.2000
White T.J., Bruns T.D., Lee S.B., Taylor J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: “PCR Protocols: A Guide to Methods and Applications” (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, eds.). Academic Press, San Diego. DOI: http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Wilson D. 1995. Endophyte – the evolution of a term, and clarification of its use and definition. Oikos 73: 274−276. DOI: https://doi.org/10.2307/3545919
Wraight S.P., Inglis G.D., Goettel M.S. 2007. Fungi. p. 223−248. In: “Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and other Invertebrate Pest”. 2nd ed. (L.A. Lacey, H.K. Kaya, eds.). Springer, Dordrecht, the Netherlands.
Wu Z.H., Wang T.H., Huang W., Qu Y.B. 2001. A simplified method for chromosome DNA preparation from filamentous fungi. Mycosystema 20 (4): 575–577.
Go to article

Authors and Affiliations

Roshan S. Shaalan
1 2
ORCID: ORCID
Elvis Gerges
3
Wassim Habib
3
Ludmilla Ibrahim
2

  1. Department of Plant Protection, University of Forestry, Sofia, Bulgaria
  2. Department of Plant Protection, Lebanese University, Beirut, Lebanon
  3. Department of Plant Protection, Lebanese Agricultural Research Institute, Lebanon

This page uses 'cookies'. Learn more