Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The equine infectious anaemia virus (EIAV) is one of the most serious equine diseases worldwide. There is scarce information on the epizootiology of equine infectious anaemia (EIA) in Saudi Arabia. Given the importance of the equine industry in Saudi Arabia, this cross- -sectional study aims to provide information about the prevalence of EIAV based on serological surveillance of the equine population in the country. A total of 4728 sera samples were collected (4523 horses and 205 donkeys) between December 2017 and November 2019. All samples were tested using commercially available EIAV ELISA. All tested samples showed negative results for EIAV antibodies with a 95% confidence interval. The results provided evidence that Saudi Arabia’s equine populations (horses and donkeys) are currently free of EIAV. The results also suggest the need for continuous monitoring of EIAV and strict regulation when importing horses from other countries.
Go to article

Bibliography


Alnaeem AA, Hemida MG (2019) Surveillance of the equine infectious anemia virus in Eastern and Central Saudi Arabia during 2014-2016. Vet World 12: 719-723.
Ataseven VS, Arslan HH (2005) Equine infectious anemia in mules, donkeys, and horses: Epidemiologic studies in the different geographic regions of Turkey. J Equine Vet Sci 25: 439-441.
Body M, Al-Rawahi A, Hussain M, Al-Lamki K, Al-Habsy S, Almaawali M, Alrawahi Q (2011) Sero-survey of equine infectious anemia in the Sultanate of Oman during 2007-2009. Pak Vet J 31: 235-238.
Bolfa P, Jeon I, Loftis A, Leslie T, Marchi S, Sithole F, Beck C, Lecollinet S, Zientara S, Hans A, Issel CJ (2017) Detection of west nile virus and other common equine viruses in three locations from the Leeward Islands, West Indies. Acta Trop 174: 24-28.
Bolfa P, Nolf M, Cadoré JL, Catoi C, Archer F, Dolmazon C, Mornex JF, Leroux C (2013) Interstitial lung disease associated with equine infectious anemia virus infection in horses. Vet Res 44: 113.
Cook RF, Leroux C, Issel CJ (2013) Equine infectious anemia and equine infectious anemia virus in 2013: a review. Vet Microbiol 167: 181-204.
Cruz F, Fores P, Ireland J, Moreno MA, Newton R (2015) Freedom from equine infectious anaemia virus infection in Spanish Purebred horses. Vet Rec Open 2: e000074.
Dong J, Cook FR, Zhu W (2014) Equine infectious anemia virus in Japan: viral isolates V70 and V26 are of North American not Japanese origin. Vet Microbiol 174: 276-278.
Ghadrdan-Mashhadi A, Shapoori M, Yoonesi E (2010) Survey on equine infectious anemia in Ahvaz. J Vet Res 65: 245-269.
Issel CJ, Foil LD (1984) Studies on equine infectious anemia virus transmission by insects. J Am Vet Med Assoc 184: 293-297.
Issel CJ, Scicluna MT, Cook SJ, Cook RF, Caprioli A, Ricci I, Rosone F, Craigo JK, Montelaro RC, Autorino GL (2013) Challenges and proposed solutions for more accurate serological diagnosis of equine infectious anaemia. Vet Rec 172: 210.
Kemen MJ, Jr., Coggins L (1972) Equine infectious anemia: transmission from infected mares to foals. J Am Vet Med Assoc 161: 496-499.
Mooney J, Flynn O, Sammin D (2006) Equine infectious anaemia in Ireland: characterisation of the virus. Vet Rec 159: 570.
Nagarajan MM, Simard C (2007) Gag genetic heterogeneity of equine infectious anemia virus (EIAV) in naturally infected horses in Canada. Virus Res 129: 228-235.
OIE (2019) Equine infectious anaemia. OIE Terrestrial Manual [Online]. Available: https://www.oie.int/fileadmin//Home/eng/Health_standards/tahm/3.05.06_EIA.pdf.
Oliveira FG, Cook RF, Naves JHF, Oliveira CHS, Diniz RS, Freitas FJC, Lima JM, Sakamoto SM, Leite RC, Issel CJ, Reis JKP (2017) Equine infectious anemia prevalence in feral donkeys from Northeast Brazil. Prev Vet Med 140: 30-37.
Piza AS, Pereira AR, Terreran MT, Mozzer O, Tanuri A, Brandão PE, Richtzenhain LJ (2007) Serodiagnosis of equine infectious anemia by agar gel immunodiffusion and ELISA using a recombinant p26 viral protein expressed in Escherichia coli as antigen. Prev Vet Med 78: 239-245.
Reis JK, Diniz RS, Haddad JP, Ferraz IB, Carvalho AF, Kroon EG, Ferreira PC, Leite RC (2012) Recombinant envelope protein (rgp90) ELISA for equine infectious anemia virus provides comparable results to the agar gel immunodiffusion. J Virol Methods 180: 62-67.
Sellon DC, Fuller FJ, Mcguire TC (1994) The immunopathogenesis of equine infectious anemia virus. Virus Res 32: 111-138.
Sharav T, Konnai S, Ochirkhuu N, Ts EO, Mekata H, Sakoda Y, Umemura T, Murata S, Chultemdorj T, Ohashi K (2017) Detection and molecular characterization of equine infectious anemia virus in Mongolian horses. J Vet Med Sci 79: 1884-1888.
Go to article

Authors and Affiliations

S. Kasem
1 2
O. Hashim
1
A. Alkarar
1
A. Hodhod
1 3
A. Elias
1
M. Abdallah
1
A. Al-Sahaf
1
A. Al-Doweriej
1
I. Qasim
1
A.S. Abdel-Moneim
4

  1. Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia
  2. Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, El Geish Street, 33516, Egypt
  3. Animal Health Research Institute – Virology Department – Damanhur Branch – Egypt
  4. Microbiology Department, Virology Division, College of Medicine, Taif University, Al-Taif, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

Asthma is one of the most common non-infectious respiratory diseases in horses. Ultrasound examination is a widely available non-invasive additional diagnostic tool. To date, there are no studies focusing on ultrasonographic findings in horses with asthma. The aim of this study was to analyse the prevalence and severity of ultrasound lesions in lung tissue in horses with asthma. Lung ultrasonography was carried out on six healthy horses (controls) and 12 horses with asthma (six with mild and six with severe asthma). The sonographic changes in three lung sections were assessed using a scoring system. The most common changes present in all the animals were comet- tail artefacts. More advanced lesions were present in horses with severe asthma. Statistically significant differences in the overall average intensity of the ultrasound changes were seen between the controls and the study group and between the horses with mild and severe asthma. The lesions were usually located in the caudal lung regions, but they were also present in other areas as the disease progressed. Ultrasonography is a useful additional diagnostic tool enabling an assessment of the stage of the asthma progression. It is a very sensitive technique that visualizes minor lesions in the lung tissue even in clinically healthy animals. Due to its low specificity, it cannot replace endoscopy and the bronchoalveolar lavage in horses with asthma.

Go to article

Authors and Affiliations

N. Siwinska
A. Zak
M. Slowikowska
P. Krupinska
A. Niedzwiedz
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the influence of the infection with equine herpesvirus type 1 (non-neuropathogenic and neuropathogenic strains of EHV-1) on the morphology and distribution of mitochondrial network in equine dermal cell line was investigated. Our results indicate that EHV-1-infection caused changes in the mitochondrial morphology manifested mostly by fission and reactive oxygen species generation.

Go to article

Authors and Affiliations

M. Bartak
M. Chodkowski
A. Słońska
M.W. Bańbura
J. Cymerys
Download PDF Download RIS Download Bibtex

Abstract

Background: Equine sarcoids are the most common neoplasms in horses. Bovine papilloma- virus type 1 (BPV-1) is the main viral type identified in equine sarcoids in Europe.

Objective: The aim of the present study was to genetically evaluate BPV types based on DNA analyses of the CDS of the L1 gene. The presence of BPV DNA was confirmed by Degenerate Oligonucleotide-Primed Polymerase Chain Reaction (DOP PCR) with FAP59/FAP64 consensus primers.

Results: The DNA was detected in 21/40 (52.5%) of clinically diagnosed sarcoids. More than half of 14 isolates (66.7%) shared 100% homology with BPV-1 Deltapapillomavirus 4 isolate 09 asi UK (Acc. No. MF384289) and 99% nucleotide identity with BPV-1 isolate EqSarc1 (Acc. No. JX678969). A comparison with BPV-1 isolate EqSarc1 revealed one silent mutation in C5827T which did not change the aminoacid codon. The remaining 6 isolates (28.6%) shared 100% nucleotide identity with the BPV-1 (Acc. No. X02346) “wild type” isolate, and 1 isolate (4.8%) demonstrated 99% nucleotide identity with BPV-2 (Acc. No. M20219).

Conclusions: Variants of BPV-1 isolate EqSarc1 (Acc. No. JX678969) constitute the most prevalent type of BPV-1 in Polish horses.

Go to article

Authors and Affiliations

A. Szczerba-Turek
J. Siemionek
A. Ras
A. Bancerz-Kisiel
A. Platt-Samoraj
K. Lipczynska-Ilczuk
W. Szweda
Download PDF Download RIS Download Bibtex

Abstract

Trypanosomiasis is one of the severe pathogenic infections, caused by several Trypanosoma species, affecting both animals and humans, causing substantial economic losses and severe illness. The objective of this study was to determine the molecular diagnosis and the risk factors associated with trypanosomiasis in District Jhang, Punjab, Pakistan. For this purpose, blood samples were randomly collected from 200 horses. A predesigned questionnaire was used to collect data on risk factors before the sample collection. The microscopy examination through Giemsa staining, formol gel test and PCR techniques were used to find the prevalence. The prevalence was recorded as 22.5% with microscopy examination, 21% through formol gel test and 15.5% with PCR based results. Analysis of risk factors associated with Trypanosoma brucei evansi occurrence was carried out using Chi-square test. It showed the prevalence of Trypanosoma brucei evansi was significantly (p<0.05) associated with sex, age, rearing purpose and body condition whereas non-significantly (p>0.05) with insects control practices. This study supports the idea that PCR is a sensitive, robust and more reliable technique to diagnose trypanosomiasis. It was concluded that Trypanosoma brucei evansi is widely prevalent in Jhang (Pakistan), highlighting a dire need to develop control strategies and education programmes to control this disease in developing countries.
Go to article

Authors and Affiliations

J. Zahoor
1
M. Kashif
1
A. Nasir
1
M. Bakhsh
1
M.F. Qamar
2
A. Sikandar
3
A. Rehman
2

  1. Department of Clinical Medicine, College of Veterinary and Animal Sciences, Jhang, Pakistan
  2. Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang Pakistan
  3. Department of Basic Sciences, College of Veterinary and Animal Sciences, Jhang Pakistan
Download PDF Download RIS Download Bibtex

Abstract

A sound knowledge of horseshoe impact on blood flow parameters is required for making shoeing decisions and selecting the most appropriate types of shoes. The aim of this study was to determine the effect of horse shoeing with egg bar shoes and shoes with wedge pads on blood flow parameters in the lateral palmar digital artery measured by Doppler ultrasound. The study was conducted on 16 horses divided into two groups. Horses from group 1 were shod with egg bar shoes. Horses from group 2 were shod with shoes with wedge pads. Doppler ultrasound parameters of the lateral palmar digital artery at the level of the metacarpophalangeal joint were evaluated. Doppler tests were performed before and after shoeing within a monthly interval. The results of the study indicate that egg bar shoes have a greater impact on blood circulation in the distal part of the equine limb than shoes with wedge pads. However, the only parameters to have changed substantially after shoeing with egg bar shoes were end-diastolic velocity (EDV) and mean velocity (Vmn) in the lateral palmar digital artery. A low-resistance blood flow pattern was noted before shoeing. After shoeing in group 1, it remained unchanged in 5 horses, whereas a high-resistance pattern was observed in 3 animals. A low-resistance blood flow pattern was noted in all group 2 horses after shoeing. The difference between the analyzed shoeing techniques could be attributed to increased pressure in the heel bulb area in horses shod with egg bar shoes. Wedge pads shift the load away from the heel bulbs, which might reduce the pressure on the palmar digital vessels and exert a smaller influence on the parameters measured in the Doppler ultrasound test.
Go to article

Authors and Affiliations

M. Mieszkowska
1
P. Holak
1
Y. Zhalniarovich
1
M. Mieszkowski
2
K. Domagalska-Stomska
3

  1. Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, Olsztyn, 10-719, Poland
  2. Department of Anesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Al. Warszawska 30, 10-082, Olsztyn, Poland
  3. Student of 5th year, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, Olsztyn, 10-719, Poland
Download PDF Download RIS Download Bibtex

Abstract

Despite over 40 years of research on the human immunodeficiency virus type 1 (HIV-1) vaccine, we still lack a considerable progress. Equine infectious anemia virus (EIAV) is a lentivirus in the Retroviridae family, akin to HIV-1 in genome structure and antigenicity. EIA is an important infectious disease in equids, characterized by anemia, persistent infection, and repeated fevers. The EIAV attenuated vaccine in China is the only lentiviral vaccine used on a large scale. Elucidating the mechanism of waning and induction of protective immunity from this attenuated vaccine strain will provide a critical theoretical basis and reference point for vaccine research, particularly in the development of lentivirus vaccines, with far-reaching scientific value and social significance. In this paper, we summarize the information related to EIAV integration site selection, particularly for the Chinese EIAV attenuated vaccine strains on the equine genome. This may improve our mechanistic understanding of EIAV virulence reduction at the host genome level. The obtained data may help elucidate the biological characteristics of EIAV, particularly the Chinese attenuated EIAV vaccine strain, and provide valuable information regarding retroviral infections, particularly lentiviral infection and associated therapeutic vectors.
Go to article

Authors and Affiliations

Y.-Y. Yu
1
M.-S. Xu
2
H. Liang
1
H.-Y. Wang
1
C.-Q. Yu
3
Q. Liu
1

  1. Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong 637131, China
  2. Chongqing Three Gorges Vocational College, Wanzhou 404155, China
  3. School of Advanced Agricultural Sciences, Yibin Vocational Technical College, Yibin 644003, China
Download PDF Download RIS Download Bibtex

Abstract

Early embryonic death (EED) is one of the causes of infertility in the mare. We compared endometrial environment in 9 mares with EED and 13 mares in diestrus phase. Cotton swab (CS), cytobrush (CB) and uterine biopsy (B) samples were obtained for the cytological, bacteriological and histopathological examinations. In the first step we compared CS and CB methods to biopsy as a reference method, as B revealed the highest number of positive results in cytological and bacteriological examinations in both groups. In turn, we also compared cytological, bacteri- ological and histopathological findings between EED and control animals using the B sampling. Although the differences between these groups were not statistically significant (p≥0.05), there was a tendency to a higher prevalence of subclinical endometritis in the control group, than in the EED group (62% vs 22%). In general, positive bacteriological results were similar in both groups (62% vs 55%), whereas positive cytological results were higher in the control group (62% vs 22%; p≥0.05). In histopathological examination in EED mares endometrial degeneration was better expressed (all mares were with grades IIB and III on the Kenney-Doig scale); however, the differences between both groups were not statistically significant (p≥0.05). We could not confirm a clear difference in uterine environment between the two groups. Moreover, the uterine biopsy seemed to be the most reasonable sampling method for diagnosis of endometrial state.

Go to article

Authors and Affiliations

E. Długołęcka
D. Tobolski
T. Janowski
Download PDF Download RIS Download Bibtex

Abstract

Neospora caninum ( N. caninum) is the etiologic agent of neosporosis, a potential cause of severe reproductive disorders in cattle, small ruminants, equines, wild animals and canids across the world. The current study is performed to estimate molecular prevalence of N. caninum in small ruminants and equines that had abortion in Kurdistan region of Iraq. A total of 64 tissue samples (brain, placenta, heart, lung and liver) were taken from aborted foetuses, with a total of 122 dam blood samples taken from 63 sheep, 39 goats, 12 mares and 8 jennies in local breed fields. Besides, a risk factor analysis for N. caninum positive animals was performed. The observed prevalence of N. caninum DNA in the blood of sheep, goats, horses and donkeys were 20.6%, 17.9%, 21.4% and 25.0%, respectively, and 19.3%, 17.6%, 18.1 and 20.0% in the aborted foetuses of the animals, respectively. Moreover, occurrence of N. caninum was 20.3% in the blood of aborted dams, while it was 18.7% in their aborted foetuses. Confirmatory analysis was also done through constructing a phylogenetic tree to compare the partial sequences of the Nc-5 gene in our isolates (OP771519, OP771520, OP771521 and OP771522) with the GenBank sequences. This showed 98-100% sequence identity with other N. caninum strains in the GenBank database. Older small ruminants and equines had a higher risk of being positive for N. caninum and exposure to dogs were considered as significant risk factors for N. caninum infection in the studied animals (p<0.05). Thus, the results of this study suggest that N. caninum is one of the microbial abortive agents in small ruminants and equines in Kurdistan region of Iraq. It is hoped that the results of this study will help to control animal abortion in livestock and reduce the economic losses.
Go to article

Bibliography

  1. Ahmed NE, Al-Akabway LM, Ramadan MY, El-Gawad SM, Moustafa MM (2017) Serological and PCR-sequencing assays for diagnosis of Toxoplasma gondii and Neospora caninum infecting camels in Egypt. Benha Vet Med J 33: 200-210.
  2. AL-Badrani BA, AL-Farwachi MI, AL-Hankawai OK (2012) Detection of Toxoplasma gondii and Neospora caninum antibodies in cattle in Mosul city, Iraq. Al-Qadisiyah J Vet Med Sci 11: 46-50.
  3. Al-Farwachi MI, Al-Badrani BA, Al-Khafaji WS (2018) Serodiagnosis of ovine neosporosis in Mosul city , Iraq. Eurasian J Vet Sci 28: 190-193.
  4. Al-Farwachi MI, Al-Hankawe OK, Al-Khafaji WS (2012) Serodiagnosis of Bovine Neosporosis in Mosul City, Iraq. Assiut Vet Med J 58: 1-4.
  5. Al-Shaeli SJ, Ethaeb AM, Gharban HA (2020) Molecular and histopathological identification of ovine neosporosis (Neospora caninum) in aborted ewes in Iraq. Vet World 13: 597-603.
  6. Almería S, Serrano-Perez B, Darwich L, Domingo M, Mur-Novales R, Regidor-Cerrillo J, Cabezón O, Pérez-Maillo M, Lopez-Helguera I, Fernández-Aguilar X, Puig-Ribas M, Ortega-Mora LM, García-Ispierto I, Dubey JP, López-Gatius F (2016) Foetal death in naive heifers inoculated with Neospora caninum isolate Nc-Spain7 at 110 days of pregnancy. Exp Parasitol 168: 62-69.
  7. Amdouni Y, Abedennebi I, Amairia S, Abdelkader A, Chandoul W, Gharbi M (2022) First molecular detection of Neospora caninum from naturally infected slaughtered camels in Tunisia. Vet Med Sci 8: 2241-2247.
  8. Amdouni Y, Rjeibi MR, Awadi S, Rekik M, Gharbi M (2018) First detection and molecular identification of Neospora caninum from naturally infected cattle and sheep in North Africa. Transbound Emerg Dis 65: 976-982.
  9. Anderson JA, Alves DA, Cerqueira-Cézar CK, da Silva AF, Murata FH, Norris JK, Howe DK, Dubey JP (2019) Histologically, immunohistochemically, ultrastructurally, and molecularly confirmed neosporosis abortion in an aborted equine fetus. Vet Parasitol 270: 20-24.
  10. Antonello AM, Pivoto FL, Camillo G, Braunig P, Sangioni LA, Pompermayer E, Vogel FS (2012) The importance of vertical transmission of Neospora sp. in naturally infected horses. Vet Parasitol 187: 367-370.
  11. Bartley PM, Guido S, Mason C, Stevenson H, Chianini F, Carty H, Innes EA, Katzer F (2019) Detection of Neospora caninum DNA in cases of bovine and ovine abortion in the South-West of Scotland. Parasitol 146: 979-982.
  12. Bártová E, Sedlák K, Kobédová K, Budíková M, Joel Atuman Y, Kamani J (2017) Seroprevalence and risk factors of Neospora spp. and Toxoplasma gondii infections among horses and donkeys in Nigeria, West Africa. Acta Parasitol 62: 606-609.
  13. Basso W, Holenweger F, Schares G, Müller N, Campero LM, Ardüser F, Moore-Jones G, Frey CF, Zanolari P (2022) Toxoplasma gondii and Neospora caninum infections in sheep and goats in Switzerland: Seroprevalence and occurrence in aborted foetuses. Food Waterborne Parasitol 28: e00176.
  14. Basso W, Venturini L, Venturini MC, Hill DE, Kwok OCH, Shen SK, Dubey JP (2001) First isolation of Neospora caninum from the feces of a naturally infected dog. J Parasitol 87: 612-618.
  15. Beck HP, Blake D, Dardé ML, Felger I, Pedraza-Díaz S, Regidor-Cerrillo J, Gómez-Bautista M, Ortega-Mora LM, Putignani L, Shiels B, Tait A, Weir W (2009) Molecular approaches to diversity of populations of apicomplexan parasites. Int J Parasitol 39: 175-189.
  16. Cong W, Nie LB, Qin SY, Wang WL, Qian AD, Meng QF (2018) Prevalence of Neospora spp. in donkeys in China. Parasite 25, 16.
  17. Costa RC, Mesquita LP, Nunes MV, Oliveira IM, Oliveira LF, Souza AR, Maiorka PC, Varaschin MS (2018) Neospora caninum bioassay in gerbils using placental tissues from naturally infected goats. Vet Parasitol 249: 70-73.
  18. Dahourou LD, Gbati OB, Savadogo M, Yougbare B, Dicko A, Combari AH, Kamga-Waladjo AR (2019) Prevalence of Toxoplasma gondii and Neospora caninum infections in households sheep “Elevage en case” in Dakar, Senegal. Vet World 12: 1028-1032.
  19. Diakou A, Papadopoulos E, Panousis N, Karatzias C, Giadinis N (2013) Toxoplasma gondii and Neospora caninum seroprevalence in dairy sheep and goats mixed stock farming. Vet Parasitol 198: 387-390.
  20. Della Rosa P, Fiorentino MA, Morrell EL, Scioli MV, Paolicchi FA, Moore DP, Cantón GJ, Hecker YP (2021) Neospora caninum and Toxoplasma gondii as causes of reproductive losses in commercial sheep flocks from Argentina. Curr Res Parasitol Vector Borne Dis 1: 100057.
  21. Duarte PC, Conrad PA, Barr BC, Wilson WD, Ferraro GL, Packham AE, Carpenter TE, Gardner IA (2004) Risk of transplacental transmission of Sarcocystis neurona and Neospora hughesi in California horses. J Parasitol 90: 1345-1351.
  22. Dubey JP (2003) Review of Neospora caninum and neosporosis in animals. Korean J Parasitol 41: 1-16.
  23. Dubey JP, Buxton D, Wouda W (2006) Pathogenesis of Bovine Neosporosis. J Comp Pathol 134: 267-289.
  24. Dubey JP, Hemphill A, Calero-Bernal R, Schares G (2017) Neosporosis in animals, 1st ed., CRC Press, Taylor and Francis group.
  25. Dubey JP, Jenkins MC, Ferreira LR, Choudhary S, Verma SK, Kwok OC, Fetterer R, Butler E, Carstensen M (2014) Isolation of viable Neospora caninum from brains of wild gray wolves (Canis lupus). Vet Parasitol 201: 150-153.
  26. Dubey JP, Schares G (2011) Neosporosis in animals-the last five years. Vet Parasitol 180: 90-108.
  27. Dubey JP, Schares G, Ortega-Mora LM (2007) Epidemiology and control of neosporosis and Neospora caninum. Clin Microbiol Rev 20: 323-367.
  28. Faraj AA, Ghattof HH (2018) Diagnosis of Neospora caninum using ELIZA and study of histopathological changes in dairy goat in Wasit province: Iraq. J Entom Zool Stud 6: 1256-1259.
  29. Gazzonis AL, Garcia GA, Zanzani SA, Ortega Mora LM, Invernizzi A, Manfredi MT (2016) Neospora caninum infection in sheep and goats from north-eastern Italy and associated risk factors. Small Rumin Res 140: 7-12.
  30. Gennari SM, Pena HF, Lindsay DS, Lopes MG, Soares HS, Cabral AD, Vitaliano SN, Amaku M (2016) Prevalence of antibodies against Neospora spp. and Sarcocystis neurona in donkeys from northeastern Brazil. Rev Bras Parasitol Vet 25: 109-111.
  31. Gharekhani J, Yakhchali M, Berahmat R (2020) Neospora caninum infection in Iran (2004-2020): A review. J Parasit Dis 44: 671-686.
  32. Gharekhani J, Yakhchali M, Heidari R (2022) Molecular detection and phylogenetic analysis of Neospora caninum in various hosts from Iran. Comp Immunol Microbiol Infect Dis 80: 101737.
  33. Ghattof HH, Faraj AA (2015) Seroprevalence of Neospora caninum in goats in Wasit province Iraq. Int J Curr Microbiol Appl Sci 4: 182-191.
  34. Gondim LF (2006) Neospora caninum in wildlife. Trends Parasitol 22: 247-252.
  35. Gondim LF, McAllister MM (2022) Experimental Neospora caninum Infection in Pregnant Cattle: Different Outcomes Between Inoculation With Tachyzoites and Oocysts. Front Vet Sci 9: 911015.
  36. González-Warleta M, Castro-Hermida JA, Regidor-Cerrillo J, Benavides J, Álvarez-García G, Fuertes M, Ortega-Mora LM, Mezo M (2014) Neospora caninum infection as a cause of reproductive failure in a sheep flock. Vet Res 45: 88.
  37. Irehan B, Sonmez A, Atalay MM, Ekinci AI, Celik F, Durmus N, Ciftci AT, Simsek S (2022) Investigation of Toxoplasma gondii, Neospora caninum and Tritrichomonas foetus in abortions of cattle, sheep and goats in Turkey: Analysis by real-time PCR, conventional PCR and histopathological methods. Comp Immunol Microbiol Infect Dis 89: 101867.
  38. Japa O, Morand S, Karnchanabanthoeng A, Chaisiri K, Ribas A (2018) Detection of Neospora caninum (Toxoplasmatidae) in wild small mammals from Thailand. Folia Parasitologica 65.
  39. King JS, Jenkins DJ, Ellis JT, Fleming P, Windsor PA, Šlapeta J (2011) Implications of wild dog ecology on the sylvatic and domestic life cycle of Neospora caninum in Australia. Vet J 188: 24-33.
  40. Langoni H, Greca HJ, Guimarães FF, Ullmann LS, Gaio FC, Uehara RS, Rosa EP, Amorim RM, Da Silva RC (2011) Serological profile of Toxoplasma gondii and Neospora caninum infection in commercial sheep from São Paulo State, Brazil. Vet Parasitol 177: 50-54.
  41. Locatelli-Dittrich R, Dittrich JR, Richartz RR, Gasino JM, Antunes J, Pinckney RD, Deconto I, Hoffmann DC, Thomaz-Soccol V (2006) Investigation of Neospora sp. and Toxoplasma gondii antibodies in mares and in precolostral foals from Parana State, Southern Brazil. Vet Parasitol 135: 215-221.
  42. Machačová T, Bártová E, Di Loria A, Sedlák K, Guccione J, Fulgione D, Veneziano V (2013) Seroprevalence and risk factors of Neospora spp. in donkeys from Southern Italy. Vet Parasitol 198: 201-204.
  43. Manca R, Ciccarese G, Scaltrito D, Chirizzi D (2022) Detection of Anti-Neospora caninum Antibodies on Dairy Cattle Farms in Southern Italy. Vet Sci 9: 87
  44. Marsh AE, Barr BC, Packham AE, Conrad PA (1998) Description of a new neospora species (Protozoa: apicomplexa: sarcocystidae). J Parasitol 5: 84-91.
  45. Mazuz ML, Mimoun L, Schvartz G, Tirosh-Levy S, Savitzki I, Edery N, Blum SE, Baneth G, Pusterla N, Steinman A (2020) Detection of Neospora caninum infection in aborted equine fetuses in Israel. Pathogenes 9: 1-11.
  46. Mendoza-Morales LF, Lagorio V, Corigliano MG, Sánchez-López E, Ramos-Duarte VA, Clemente M, Sander VA (2022) Neosporosis in sheep: A systematic review and meta-analysis of global seroprevalence and related risk factors. Acta Trop 233: 106569.
  47. Moore DP, de Yaniz MG, Odeón AC, Cano D, Leunda MR, Späth EA, Campero CM (2007) Serological evidence of Neospora caninum infections in goats from La Rioja Province, Argentina. Small Rumin Res 73: 256-258.
  48. Moreira TR, Sarturi C, Stelmachtchuk FN, Andersson E, Norlander E, de Oliveira FL, Machado Portela J, Marcili A, Emanuelson U, Gennari SM, Minervino AH (2019) Prevalence of antibodies against Toxoplasma gondii and Neospora spp. in equids of Western Pará Brazil. Acta Trop 189: 39-45.
  49. Moreno B, Collantes-Fernández E, Villa A, Navarro A, Regidor-Cerrillo J, Ortega-Mora LM (2012) Occurrence of Neospora caninum and Toxoplasma gondii infections in ovine and caprine abortions. Vet Parasitol 187: 312-318.
  50. Müller N, Zimmermann V, Hentrich B, Gottstein B (1996) Diagnosis of Neospora caninum and Toxoplasma gondii infection by PCR and DNA hybridization immunoassay. J Clin Microbiol 34: 2850-2852.
  51. Nayeri T, Sarvi S, Moosazadeh M, Daryani A (2022) The Global Prevalence of Neospora caninum Infection in Sheep and Goats That Had an Abortion and Aborted Fetuses: A Systematic Review and Meta-Analysis. Front Vet Sci 9: 870904
  52. Nooruldeen MY, Jaafar SE, Salih AI (2021) Seroprevalence of Neospora caninum infections in cattle in Kirkuk province. Iraqi J Vet Sci 35: 331-334.
  53. Novoa MB, Soler JP, Cirone KM, Hecker YP, Valentini BS, Primo ME, Moore DP (2023) Use and comparison of serologic assays to detect anti-Neospora caninum antibodies in farmed red deer (Cervus elaphus). Vet Parasitol 313: 109839.
  54. Rahmani SS, Malekifard F, Tavassoli M (2022) Neospora caninum, a cause of abortion in donkeys (Equus asinus) in Iran. Parasitol Res 121: 367-372.
  55. Reichel MP, Ayanegui-Alcérreca MA, Gondim LF, Ellis JT (2013) What is the global economic impact of Neospora caninum in cattle - the billion dollar question. Int J Parasitol 43: 133-142.
  56. Rodrigues AA, Brito DR, Kono IS, Reis SS, de Souza Lima Nino B, Nascimento TV, Barros LD, Garcia JL, de Cunha IA (2022) Seroprevalence of Neospora caninum and risk factors associated with infection in water buffaloes (Bubalus bubalis) from Maranhão State, Brazil. Vet Parasitol Reg Stud Reports 27: 100661.
  57. Sedlák K, Bartova E, Machacova T (2014) Seroprevalence of Neospora caninum in cats from the Czech Republic. Acta Parasitol 59: 359-361.
  58. Špilovská S, Reiterová K (2008) Seroprevalence of Neospora caninum in aborting sheep and goats in the Eastern Slovakia. Folia Vet 52: 33-35.
  59. Tayyub M, Ali S, Javid A, Imran M (2022) Molecular detection of Toxoplasma gondii and Neospora caninum in rock pigeons (Columba livia) in Punjab, Pakistan. Parasitol Res 121: 1499-1505
  60. Tirosh-Levy S, Savitsky I, Blinder E, Mazuz ML (2022) The involvement of protozoan parasites in sheep abortions – a ten-year review of diagnostic results. Vet Parasitol 303: 109664.
  61. Tirosh-Levy S, Steinman A, Minderigiu A, Arieli O, Savitski I, Fleiderovitz L, Edery N, Schvartz G, Mazuz ML (2020) High Exposure to Toxoplasma gondii and Neospora Spp. in Donkeys in Israel: Serological Survey and Case Reports. Animals 10: 1921
  62. Waap H, de Oliveira UV, Nunes T, Gomes J, Gomes T, Bärwald A, Dias Munhoz A, Schares G (2020) Serological survey of Neospora spp. and Besnoitia spp. in horses in Portugal. Vet Parasitol Reg Stud Reports 20: 100391.
  63. Wouda W, van den Ingh TS, van Knapen F, Sluyter FJ, Koeman JP, Dubey JP (1992) Neospora abortion in cattle in The Netherlands. Tijdschr Diergeneeskd 117: 599-602.
  64. Yang J, Ai J, Qi T, Ni X, Xu Z, Guo L, Sun Y, Li Y, Kang M, Li J (2022) Toxoplasma gondii and Neospora caninum Infections in Stray Cats and Dogs in the Qinghai-Tibetan Plateau Area, China. Animals 12: 1390
  65. Zhao SS, Tao DL, Chen JM, Chen X, Geng XL, Wang JW, Yang X, Song JK, Liu Q, Zhao GH (2022) Neospora caninum infection activated autophagy of caprine endometrial epithelial cells via mTOR signaling. Vet Parasitol 304: 109685.
Go to article

Authors and Affiliations

R.R. Mohammed
1
M. Tavassoli
1
K.R. Sidiq
2
B. Esmaeilnejad
1

  1. Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Nazloo Campus, PO Box 1177, Urmia, West Azerbaijan, Iran
  2. Department of Medical Laboratory Science, College of Medical and Applied Sciences, Charmo University, 46023 Chamchamal, Sulaimani, Kurdistan Region, Iraq
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to develop an equine-derived hyperimmune serum against SARS-CoV-2 and evaluate its efficacy as a potential immunotherapy tool for the treatment of known and potential variants of COVID-19 in preclinical trials.
The novelty of this study is the whole virus and ALUM gel adjuvant formula. The horses were immunized using a whole inactivated SARS-CoV-2 antigen, and the final purified hyperimmune serum showed high plaque reduction neutralization (PRNT 50) neutralizing titers. The efficacy of the hyperimmune serum was evaluated histopathologically and biochemically in the lungs, hearts, and serum of K18 hACE2 transgenic mice (n=45), which is an accepted model organism for SARS-CoV-2 studies and was challenged with live SARS-CoV-2.
Serum treatment improved the general condition, resulting in lower levels of proinflammatory cytokines in the blood plasma, as well as reduced viral RNA titers in the lungs and hearts. Additionally, it reduced oxidative stress significantly and lessened the severity of interstitial pneumonia in the lungs when compared to infected positive controls.
The study concluded that equine-derived anti-SARS-CoV-2 antibodies could be used for COVID-19 prevention and treatment, especially in the early stages of the disease and in combination with antiviral drugs and vaccines. This treatment will benefit special patient populations such as immunocompromised individuals, as specific antibodies against SARS-CoV-2 can neutralize the virus before it enters host cells. The rapid and cost-effective production of the serum allows for its availability during the acute phase of the disease, making it a critical intervention in preventing the spread of the disease and saving lives in new variants where a vaccine is not yet developed.
Go to article

Bibliography

1. Botosso VF, Jorge SAC, Astray RM, Guimaraes AMS, Mathor MB, Carneiro PS, Durigon EL, Covas D, Oliveira DBL, Oliveira RN, Maria DA, Eto SF, Gallina NMF, Pidde G, Squaiella-Baptistão CS, Silva DT, Villas-Boas IM, Fernandes DC, Auada AVV, Banari AC, Filho AFS, Bianconi C, Utescher CLA, Oliveira DCA, Mariano DOC, Barbosa FF, Rondon G, Kapronezai J, Silva J G, Goldfeder MB, Comone P, Junior REC, Pereira TTS, Wen FH, Tambourgi DV, Chudzinski-Tavassi AM (2022) Anti-SARS-CoV-2 equine F (Ab′)2 immunoglobulin as a possible therapy for COVID-19. Sci Rep 12: 3890.
2. De Vito A, Colpani A, Saderi L, Puci M, Zauli B, Fiore V, Fois M, Meloni MC, Bitti A, Di Castri C, Maida I, Babudieri S, Sotgiu G, Madeddu G. (2022) Impact of early SARS-CoV-2 antiviral therapy on disease progression. Viruses 15: 71.
3. Dong W, Mead H, Tian L, Park JG, Garcia JI, Jaramillo S, Barr T, Kollath DS, Coyne VK, Stone NE, Jones A, Zhang J, Li A, Wang LS, Milanes-Yearsley M, Torrelles JB, Martinez-Sobrido L, Keim PS, Barker BM, Caligiuri MA, Yu J (2022) The K18-Human ACE2 transgenic mouse model recapitulates non-severe and severe COVID-19 in response to an infectious dose of the SARS-CoV-2 virus. J Virol: e0096421.
4. Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD, Mucker EM, White LE, Shamblin JD, Brocato RL, Liu J, Babka AM, Rauch HB, Smith JM, Hollidge BS, Fitzpatrick C, Badger CV, Hooper JW (2020) Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight 5: e142032.
5. Jha A, Barker D, Lew J, Manoharan V, Kessel JV, Haupt R, Toth D, Frieman M, Falzarano D, Kodihalli S (2022) Efficacy of COVID-HIGIV in animal models of SARS-CoV-2 infection. Sci Rep 12: 16956.
6. León G, Herrera M, Vargas M, Arguedas M, Sánchez A, Segura A, Gómez A, Solano G, Aguilar E C, Risner K, Narayanan A, Bailey C, Villalta M, Hernández A, Sánchez A, Cordero D, Solano D, Durán G, Segura E, Cerdas M, Umaña D, Moscoso E, Estrada R, Gu-tiérrez J, Méndez M, Castillo AC, Sánchez L, Sánchez R, Gutiérrez JM, Díaz C, Alape A (2021) Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. Sci Rep 11: 9825.
7. Li E, Han Q, Bi J, Wei S, Wang S, Zhang Y, Liu J, Feng N, Wang T, Wu J, Yang S, Zhao Y, Liu B, Yan F, Xia X (2023) Therapeutic equine hyperimmune antibodies with high and broad-spectrum neutralizing activity protect rodents against SARS-CoV-2 infection. Front Immunol 14: 1066730.
8. Luis Eduardo Cunha, Stolet AA, Strauch MA, Pereira VAR, Dumard CH, Gomes AMO, Souza PNC, Fonseca JG, Pontes FE, Meirelles LGR, Albuquerque JWM, Sacramento CQ, Rodrigues NF, Lima TM, Alvim RGF, Marsili FF, Caldeira MM, Higa LM, Monteiro FL, Zingali RB, Oliveira GAP, Souza TML, Tanuri A, Oliveira AC, Guedes H L M, Castilho L R , Silva J L (2020) Potent neutralizing equine antibodies raised against recombinant SARS-CoV-2 spike protein for COVID-19 passive immunization therapy. Cold Spring Harbor Laboratory, bioRxiv 17: 254375
9. Maccio U, Zinkernagel AS, Shambat SM, Zeng X, Cathomas G, Ruschitzka F, Schuepbach RA, Moch H, Varga Z. SARS-CoV-2 (2021) Leads to a small vessel endotheliitis in the heart. EBioMedicine 63: 103182.
10. Moreira-Soto A, Arguedas M, Brenes H, Buján W, Corrales-Aguilar E, Díaz C, Echeverri A, Flores-Díaz M, Gómez A, Hernández A, Herrera M, León G, Macaya R, Kühne A, Molina-Mora JA, Mora J, Sanabria A, Sánchez A, Sánchez L, Segura Á, Segura E, Solano D, Soto C, Stynoski JL, Vargas M, Villalta M, Reusken CBEM, Drosten C, Gutiérrez JM, Alape-Girón A, Drexler JF (2021) High efficacy of therapeutic equine hyperimmune antibodies against SARS-CoV-2 variants of concern. Frontiers in Medicine. 8: 735853.
11. Onen EA, Sonmez K, Yildirim F, Demirci EK, Gurel A (2022) Development, analysis, and preclinical evaluation of inactivated vaccine candidate for prevention of Covid-19 disease. All Life 15: 771-793.
12. Pan X, Zhou P, Fan T, Wu Y, Zhang J, Shi X, Shang W, Fang L, Jiang X, Shi J, Sun Y, Zhao S, Gong R, Chen Z, Xiao G (2020) Im-munoglobulin fragment F(ab’)2 against RBD potently neutralizes SARS-CoV-2 in vitro. Antiviral Res 182: 104868.
13. Schoell A, Heyde B, Weir D, Po-Chang C, Yiding H, Tung D (2009) Euthanasia method for mice in rapid time-course pulmonary. Pharmacokinetic Studies 48: 506.
14. Suvarna KS, Layton C, Bancroft JD (2018) Bancroft’s theory and practice of histological techniques E-Book. Elsevier health sciences, Philadelphia, pp 286-291.
15. Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, Fox JM, Chen RE, Earnest JT, Keeler SP, Ritter JH, Kang L, Dort S, Robichaud A, Head R, Holtzman MJ, Diamond MS (2020) SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol 21: 1327-1335.
16. Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G (2020) SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res 21: 182.
17. Yu P, Deng W, Bao L, Qu Y, Xu Y, Zhao W, Han Y, Qin C (2022) Comparative pathology of the nasal epithelium in K18-hACE2 Tg mice, hACE2 Tg mice, and hamsters infected with SARS-CoV-2. Vet Pathol 59: 602-612.
18. Zhang Q, Wang Y, Qi C, Shen L, Li J (2020) Clinical trial analysis of 2019-nCoV therapy registered in China. J Med Virol 92: 540-545.

Go to article

Authors and Affiliations

E.A. Onen
1
E.K. Demirci
2

  1. Kocak Pharmaceutical Company, Biotechnology and Vaccine R&D, Tekirdag, Turkey
  2. Histology and Embryology Department, Istanbul Faculty of Medicine,Istanbul University, Istanbul, Turkey

This page uses 'cookies'. Learn more