Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the study the comparative analysis of test results of drainage of municipal wastewater sludge was conducted with the use of flocculant Praestol 855BS and the mixture of flocculant Praestol 855BS 50% + orange essential oil 50%, as the reagents supporting this process. It was also attempted to reduce unpleasant smells exuding from the drained sludge.

The process of drainage of municipal wastewater sludge was conducted in the laboratory setting centrifuge of MPW-350 type. The variable independent parameters were centrifugation time, centrifugation speed, dosage of flocculant Praestol 855BS as well as dosage of mixture in the proportion of flocculant Praestol 855BS (50%) + orange essential oil (50%). The following parameters were subject to assessment: water content in the sludge, dry mass content in the reflux as well as time of maintenance of the oil’s smell in the sludge. The conducted tests demonstrated that the orange essential oil has an impact on drop in resultant quality parameters of the drainage process of municipal wastewater sludge. Batching of the orange essential oil has an impact on considerable reduction of odours exuding from drained wastewater sludge, and thus on improvement of work conditions connected with operation of centrifugal separators. Bearing in mind both the efficient drainage process of wastewater sludge as well as simultaneous reduction of unpleasant smells exuding from the sludge during this process it is assumed and recommended to simultaneously apply both reagents, that is flocculant Praestol 855BS (50%) and orange essential oil, also in the volume of 50%.

Go to article

Authors and Affiliations

Anna Kowalczyk
Tadeusz Piecuch
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition of tea tree (Melaleuca alternifolia) and wintergreen (Gaultheria procumbens) essential oils as well as their phytotoxic effects against two invasive species – Cortaderia selloana and Nicotiana glauca – were studied. Fifty-eight compounds accounting for 98.89–99.94% of the total commercial tea tree and wintergreen essential oils were identified by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Tea tree essential oil with terpinen- 4-ol (28.37 ± 0.05%) followed by 1,8-cineole (15.81 ± 0.06%), γ-terpinene (15.60 ± 0.03%), α-pinene (10.92 ± 0.08%) and α-terpinene (8.52 ± 0.01%) as the main compounds did not produce significant effects against seed germination and hypocotyl growth of N. glauca, but showed significant effects in seed germination inhibition of C. selloana (34.69%) as well as in hypocotyl (60.96%) and radicle (62.55%) growth, at the highest dose (1 μl ⋅ ml–1) assayed. High amounts of methyl salicylate (99.63 ± 0.02%) were found in G. procumbens essential oil with remarkable phytotoxic effects in C. seollana. Methyl salicylate inhibited seed germination (77.38%) and hypocotyl and radicle growth (96.38% and 96.65%, respectively) at the highest dose (1 μl ⋅ ml–1) assayed. Wintergreen essential oil constitutes an eco-friendly alternative to control the high capacity of invasiveness of C. selloana.

Go to article

Authors and Affiliations

María Dolores Ibáñez
María Amparo Blázquez
Download PDF Download RIS Download Bibtex

Abstract

The present study investigated the potential use of the nano-emulsion of Lippia multiflora Mold. essential oil in managing the cabbage pest ( Brassica oleracea L.) in two Ivorian areas (Yamoussoukro and Korhogo) during the wet seasons (April-September 2018). The nano- -emulsion was tested against cabbage diamondback moth ( Plutella xylostella), aphid ( Brevicoryne brassicae), webworm ( Hellula undalis), cutworm ( Spodoptera exigua) and whitefly ( Bemisia tabaci) under field conditions. The efficacy of essential oil emulsion was compared with the synthetic pesticide Karate 5 EC (Lambda cyhalothrin 52 g · l–1). The results indicated that the nano-emulsion of essential oil gave better control of the cabbage insect pest than the untreated plots. For all the insects studied, the nano-emulsion was very effective towards the species B. brassicae and P. xylostella for which the reduction of the mean population was respectively, 28.48 ± 0.2 and 0.6 ± 0.02 in Yamoussoukro and 0.0 and 7.11 ± 0.16 in Korhogo, compared to 45.32 ± 0.43 and 15.89 ± 0.23, respectively, for untreated plots. The yields of cabbage heads obtained in both areas Yamoussoukro and Korhogo were 4.7 and 15, respectively. The head damage percentages were 23.3% in Yamoussoukro and 26.7% in Korhogo when the fields were sprayed with nano-emulsion and were 13.3% and 28.3%, respectively, when the cabbages were treated with the synthetic pesticide. The formulation obtained here might be an interesting alternative for integrated pest management of cabbage.
Go to article

Bibliography

1. Aboagye E. 1996. Biological studies and insecticidal control of cabbage worm ( Hellula undalis). PhD Thesis, Bsc. Dissertation, Faculty of Agriculture, KNUST, Kumasi.
2. Baba M.F., Koumaglo K., Ayedoun A., Akpagana K., Moudachirou M., Bouchet P. 1997. Activité antifongique d’huiles essentielles extraites au Bénin et au Togo. Cryptogamie. Mycologie 18 (2): 165–168. (in French)
3. Baidoo P.K., Adam J.I. 2012. The effects of extracts of Lantana camara (L.) and Azadirachta indica (A. Juss) on the population dynamics of Plutella xylostella, Brevicoryne brassicae and Hellula undalis on cabbage. Sustainable Agriculture Research 1: 229–234. DOI: http://dx.doi.org/10.5539/sar.v1n2p229
4. Baidoo P.K., Mochiah M.B. 2016. Comparing the effectiveness of garlic ( Allium sativum L.) and hot pepper ( Capsicum frutescens L.) in the management of the major pests of cabbage Brassica oleracea (L.). Sustainable Agriculture Research 5: 83–91. DOI: http://dx.doi.org/10.5539/sar.v5n2p83
5. Bassole I.H., Guelbeogo W.M., Nebie R., Costantini C., Sagnon N., Kabore Z.I., Traore S.A. 2003. Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso. Parassitologia 45: 23–26.
6. Bassolé I.H.N., Lamien-Meda A., Bayala B., Tirogo S., Franz C., Novak J., Nebié R.C., Dicko M.H. 2010. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 15: 7825–7839. DOI: https://doi.org/10.3390/molecules15117825
7. Boulogne I., Petit P., Ozier-Lafontaine H., Desfontaines L., Loranger-Merciris G. 2012. Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chemistry Letters 10: 325–347. DOI: http://dx.doi.org/10.1007/s10311-012-0359-1
8. Cerda H., Carpio C., Ledezma-Carrizalez A.C., Sánchez J., Ramos L., Muñoz-Shugulí C., Andino M., Chiurato M. 2019. Effects of aqueous extracts from amazon plants on Plutella xylostella (Lepidoptera: Plutellidae) and Brevicoryne brassicae (Homoptera: Aphididae) in laboratory, semifield, and field trials. Journal of Insect Science 19 (5): 8. DOI: 10.1093/jisesa/iez068
9. Christofoli M., Costa E.C.C., Bicalho K.U., Cássia D. V., Peixoto M.F., Alves C.C.F., Araújo W.L., Melo Cazal C. 2015. Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Industrial Crops and Products 70: 301–308. DOI: https://doi.org/10.1016/j.indcrop.2015.03.025
10. Dadang D., Fitriasari E.D., Prijono D. 2011. Field efficacy of two botanical insecticide formulations against cabbage insect pests, Crocidolomia pavonana (F.) (Lepidoptera: Pyralidae) and Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Journal of International Society for Southeast Asian Agricultural Sciences 17: 38–47.
11. Feng J., Zhang, Q., Liu Q., Zhu Z., McClements D.J., Jafari S.M. 2018. Application of nanoemulsions in formulation of pesticides. p. 379–413. In: “Nanoemulsions, Formulation, Applications, and Characterization” (S.M. Jafari, D.J. McClements, eds.). Elsevier, 664 pp. DOI: 10.1016/B978-0-12-811838-2.00012-6
12. Furlong M.J., Wright D.J., Dosdall L.M. 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annual Review of Entomology 58: 517–541. DOI: https://doi.org/10.1146/annurev-ento-120811-153605
13. Gill H.K., Garg H. 2014. Pesticides: environmental impacts and management strategies, Pesticides-toxic aspects. IntechOpen. DOI: 10.5772/57399
14. Ezena G.N., Akotsen-Mensah C., Fening K.O. 2016. Exploiting the insecticidal potential of the invasive siam weed, Chromolaena odorata L. (Asteraceae) in the management of the major pests of cabbage and their natural enemies in Southern Ghana. Advances in Crop Science and Technology 4: 230. DOI: https://doi.org/10.4172/2329-8863.1000230
15. Khoshraftar Z., Safekordi A.A., Shamel A., Zaefizadeh M. 2019. Synthesis of natural nanopesticides with the origin of Eucalyptus globulus extract for pest control. Green Chemistry Letters and Reviews 12: 286–298. DOI: https://doi.org/10.1080/17518253.2019.1643930
16. Maji T.K., Baruah I., Dube S., Hussain M.R. 2007. Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresource Technology 98: 840–844. DOI: https://doi.org/10.1016/j.biortech.2006.03.005
17. Mondedji A.D., Nyamador W.S., Amevoin K., Ketoh G. K., Glitho I. A. 2014. Efficacité d’extraits de feuilles de neem Azadirachta indica (Sapindale) sur Plutella xylostella (Lepidoptera : Plutellidae), Hellula undalis (Lepidoptera : Pyralidae) et Lipaphis erysimi (Hemiptera : Aphididae) du chou Brassica oleracea (Brassicaceae) dans une approche « Champ Ecole Paysan » au sud du Togo. International Journal of Biological and Chemical Sciences, 8(5): 2286-2295.
18. Munthali D.C., Tshegofatso A.B. 2014. Factors affecting abundance and damage caused by cabbage aphid, Brevicoryne brassicae on four Brassica leafy vegetables: Brassica oleracea var. Acephala, B. chinense, B. napus and B. carinata. The Open Entomology Journal 8: 1–9. DOI: 10.2174/1874407901408010001
19. Mustafa I.F., Hussein M.Z. 2020. Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials 10: 1608. DOI: https://doi.org/10.3390/nano10081608
20. Oladimeji F.A., Orafidiya O.O., Ogunniyi T.A.B., Adewunmi T.A. 2000. Pediculocidal and scabicidal properties of Lippia multiflora essential oil. Journal of Ethnopharmacology 72: 305–311. DOI: 10.1016/s0378-8741(00)00229-4
21. Owolabi M.S., Ogundajo A., Lajide L., Oladimeji M.O., Setzer W.N., Palazzo M.C. 2009. Chemical composition and antibacterial activity of the essential oil of Lippia multiflora Moldenke from Nigeria. Record of Natural Product 3: 170–177.
22. Paula H.C., Sombra F.M., Abreu F.O., Paul R. 2010. Lippia sidoides essential oil encapsulation by angico gum/chitosan nanoparticles. Journal of the Brazilian Chemical Society 21: 2359–2366. DOI: http://doi.org/10.1590/S0103-50532010001200025
23. Shiberu T., Negeri M. 2016. Effects of synthetic insecticides and crude botanicals extracts on cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) on cabbage. Journal of Fertilizers and Pesticides 7: 162. DOI: 10.4172/2471-2728.1000162
24. Solomon B., Sahle F.F., Gebre-Mariam T., Asres K., Neubert R.H.H. 2012. Microencapsulation of citronella oil for mosquito-repellent application: Formulation and in vitro permeation studies. European Journal of Pharmaceutics and Biopharmaceutics 80: 61–66. DOI: 10.1016/j.ejpb.2011.08.003
25. Tia E.V., Adima A.A., Niamké S.L., Jean G.A., Martin T., Lozano P., Menut C. 2011. Chemical composition and insecticidal activity of essential oils of two aromatic plants from Ivory Coast against Bemisia tabaci G. (Hemiptera: Aleyrodidae). Natural Product Communications 6 (8): 1183–1188. DOI: 10.1177/1934578X1100600835
26. Tia E.V., Lozano P., Menut C., Lozano Y.F., Martin T., Niamké S., Adima A.A. 2013. Potentiality of essential oils for control of the whitefly Bemisia tabaci Genn., a greenhouse pest. Phytothérapie 11: 31–38. DOI: 10.1007/s10298-012-0736-8
27. Tia V.E., Doannio J.M. C., Adima A.A. 2020. Repellent effect of some essential oil from Ivorian ethnomedicinal plant against malaria vector, Anopheles gambiae (Giles, 1902). International Journal of Mosquito Research 7 (1): 16–24.
28. Yang F.-L., Li X.-G., Zhu F., Lei C.-L. 2009. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry 57: 10156–10162. DOI: 10.1021/jf9023118
29. Zorzi G.K., Carvalho E.L.S., von Poser G.L., Teixeira H.F. 2015. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Revista Brasileira de Farmacognosia 25: 426–436. DOI: https://doi.org/10.1016/j.bjp.2015.07.015
Go to article

Authors and Affiliations

Vama Etienne Tia
1
Soumahoro Gueu
2
Mohamed Cissé
1
Yalamoussa Tuo
3
Ayekpa Jean Gnago
4
Eugène Konan
5

  1. Département Biochimie – Génétique, Université Peleforo Gon Coulibaly, BP1328 Korhogo, Côte d’Ivoire (Ivory Coast)
  2. Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny, BP1093 Yamoussoukro, Côte d’Ivoire (Ivory Coast)
  3. Département Biologie Animale, Université Peleforo Gon Coulibaly, BP1328 Korhogo, Côte d’Ivoire (Ivory Coast)
  4. Laboratoire de Zoologie Agricole et d’Entomologie, Institut National Polytechnique Félix Houphouët-Boigny, BP1093 Yamoussoukro, Côte d’Ivoire (Ivory Coast)
  5. Département de Recherche et Développement, Compagnie Ivoirienne de Coton (COIC), BP193 Korhogo, Côte d’Ivoire (Ivory Coast)
Download PDF Download RIS Download Bibtex

Abstract

The fumigant pesticide methyl bromide (MB) is no longer used in most countries due to its carcinogenic effects. It is followed by carbon bisulfide and chloropicrin which are the most effective liquid synthetic chemicals in pesticide formulations. They are converted to gas to penetrate soil particles and eliminate plant pests such as insects, weeds, and causal plant diseases of viruses, bacteria, fungi, and nematodes under greenhouse, field and storage conditions. These fumigants are non specific pesticides and highly hazardous to humans, environmental resources, and deplete the ozone layers. Furthermore, increasing the cost of crop production by inceasing the amount of pesticides treatments was increased the cost of research on the alternatives of green pesticides from eco-friendly agents, natural organic soil amendments of organic wastes, green manure, biofumigation crops, compost, and essential oils, as well as formulations, are examples of this. Organic fumigants that are non toxic, non-residual, highly degradable and decomposable are available as eco-friendly alternatives to chemical pesticides to manage soil borne pests and diseases of plants. This article summarizes the development of applicable eco-friendly formulations which use natural organic materials to disinfest soil in order to reduce plant diseases caused by soil- -borne pathogens.
Go to article

Authors and Affiliations

El-Sayed Hussein Ziedan
1

  1. Plant Pathology Department, National Research Centre (NRC), Dokki, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Essential oils from plants used in traditional medicine are known as a rich source of chemically diverse compounds with specific biological activities. Achillea millefolium essential oil (AEO) was screened for in vitro activity against Babesia canis. The AEO was obtained by hydrodistillation and analysed by gas chromatography coupled to mass spectrometry (GC-MS). GC-MS revealed the presence of 47 compounds in the essential oil. Those present in the highest concentrations were chamazulene (34.45%), β-caryophyllene (8.93%), (E)-germacrene D (7.55%), patchoulene (7.27%), β-guaiene (4.62%), α-humulene (4.59%), santolina epoxide (4.41%), ethyl iso-allocholate (2.97%), aromadendrene (2.62%), and neoclovenoxid-alkohol (2.46%). AEO was found to be active in vitro against B. canis, with 50% inhibitory concentration (IC50) values of 0.06 mg/mL, as compared to imidocarb, with IC50 = 0.007 mg/mL. The study confirms that essential oil from A. millefolium has anti-babesial properties in vitro.
Go to article

Authors and Affiliations

L. Guz
1
J. Wawrzykowski
2
Ł. Adaszek
3

  1. Department of Fish Diseases and Biology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
  2. Department of Animal Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
  3. Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

It seems that essential oils can be a good ingredient in effective preparations against Dermanyssus gallinae. Dermanyssus affects animal health leading to financial losses and bird welfare issues. Collected mites were treated with various essential oils in four (20, 50, 80 and 100%) concentrations at a dose of 0.28 mg/cm2. The direct toxicity of the essential oils, mineral oil and spinosad to D. gallinae was tested in the laboratory. Eucalyptus oil was the most toxic essential oil in all concentrations to D. gallinae (87.6 - 97.6% mortality at all four concentrations), while geranium, pine and rosemary oils showed mortality rates of 14.2 - 68.2%. High mortality after 48 hours of contact was also recorded for the oil of cloves at 80% dilution (85.1% mortality), lavender 100% (94.2% mortality). Similarly, the thyme essential oil produced 83.5 - 93.2% mortality in three concentrations: 50, 80 and 100%. The mineral oil was the least effective oil against mites. Spinosad showed high effectiveness against D. gallinae.
Go to article

Bibliography


Anastas P, Kirchchoff M, Williamson T (1999) Green Chemistry awards: spinosad – a new natural product for insect control. Green Chem 1: G88.
Axtell RC (1999) Poultry integrated pest management: Status and future. Integr Pest Manag Rev 4: 53-73.
Beugnet F, Chauve C, Gauthey M, Beert L (1997) Resistance of the red poultry mite to pyrethroids in France. Vet Rec 140: 577-579.
Bobrek K, Gaweł A (2017) Invasion of Red Mite ( Dermanyssus gallinae) as a cause of foot self-mutilation in a laying hen flock. Pak Vet J 37: 242-244.
Bordin C, Alves DS, Alves LF, Oliveira MS, Ascari J, Scharf DR (2021) Fumigant activity of essential oils from Cinnamomum and Citrus spp. and pure compounds against Dermanyssus gallinae (De Geer) (Acari: Derma nyssidae) and toxicity toward the nontarget organ-ism Beauveria bassiana (Vuill.). Vet Parasitol 290: 109341.
Cernea LC, Şuteu E, Cernea M, Lefkaditis M, Cozma V (2006) Realization of an experimental model for in vitro testing of the acaricidal effect of the vegetal extracts. Rev Sci Parasitol 7: 35-40.
Chalchat JC, Ozcan MM, Dagdelden A, Akgul A (2007) Variability of essential oil composition of Echinophora tenuifolia subsp. sibthorpiana Tutin by harvest location and year and oil storage. Chem Nat Comp 43: 225-227.
Chauve C (1998) The poultry red mite Dermanyssus gallinae (De Geer 1778): current situation and future prospects for control. Vet Parasitol 79: 239-245.
Chen Z, van Mol W, Vanhecke M, Duchateau L, Claerebout E (2019) Acaricidal activity of plant-derived essential oil components against Psoroptes ovis in vitro and in vivo. Parasit Vectors 12: 425.
Chiasson H, Bélanger A, Bostanian N, Vincent C, Poliquin A (2001) Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtai ned by three methods of extraction. J Econ Entomol 94: 167-171.
Ciesielska J, Malusà E, Sas Paszt L (2011) “Plant protection products used in organic farming”. In: Ligocka T (ed) “Development of innova-tive technologies for ecological production of fruit plants”. PPHU “Graf-Sad”. Free copy co-financed by the European Union from the Euro-pean Regional Development Fund under the Operational Program Innovative Economy Contract N. UDA-POIG. 01.03.01-10-109/08-00.
Circella E, Pugliese N, Todisco G, Cafiero MA, Sparagano OA, Camarda A (2011) Chlamydia psittaci infection in canaries heavily infested by Dermanyssus gallinae. Exp Appl Acarol 55: 329-338.
Cosoroaba I (2001) Massive Dermanyssus gallinae invasion in battery-husbandry raised fowls. Revue Méd Vét 152: 89-96.
Di Palma A, Giangaspero A, Cafiero MA, Germinara GS (2012) A gallery of the key characters to ease identification of Dermanyssus gallinae (Acari: Gamasida: Dermanyssidae) and allow differentiation from Ornithonyssus sylviarum (Acari: Gamasida: Macro-nyssidae). Parasit Vectors 5: 104.
Entrekin DL, Oliver JH Jr (1982) Aggregation of the chicken mite, Dermanyssus gallinae (Acari: Dermanyssidae). J Med Entomol 19: 671-678.
Fiddes MD, Le Gresley S, Parsons DG, Epe C, Coles GC, Stafford KA (2005) Prevalence of the poultry red mite ( Dermanyssus gallinae) in England. Vet Rec 157: 233-235.
Flamini G, Cioni PL (2007) Seasonal variation of the chemical constituents of the essential oil of Santolina etrusca from Italy. Chem Biodivers 4: 1008-1019.
Gay M, Lempereur L, Francis F, Caparros Megido R (2020) Control of Dermanyssus gallinae (De Geer 1778) and other mites with volatile organic compounds, a review. Parasitology 147: 731­739.
George DR, Masic D, Sparagano OA, Guy JH (2009a) Variation in chemical composition and acaricidal activity against Dermanyssus gallinae of four eucalyptus essential oils. Exp Appl Acarol 48: 43-50.
George DR, Shiel RS, Appleby WG, Knox A, Guy JH (2010) In vitro and in vivo aca-ricidal activity and residual toxicity of spinosad to the poultry red mite, Dermanyssus gallinae. Vet Parasitol 173: 307-316.
George DR, Smith TJ, Shiel RS, Sparagano OA, Guy JH (2009b) Mode of action and variability in efficacy of plant essential oils showing toxicity against the poultry red mite, Dermanyssus gallinae. Vet Parasitol 161: 276-282.
George DR, Smith TJ, Sparagano OA, Guy JH (2008) The influence of ‘time since last blood meal’ on the toxicity of essential oils to the poultry red mite ( Dermanyssus gallinae). Vet Parasitol 155: 333-335.
Gharbi M, Sakly N, Darghouth MA (2013) Prevalence of Dermanyssus gallinae (Mesostigmata: Dermanyssidae) in industrial poultry farms in North-East Tunisia. Parasite 20: 41.
Guimarães JH, Tucci EC (1992) Evaluation of the efficiency of mineral oil in the control of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae), under field and laboratory conditions. Rev Bras Entomol 36: 859-862.
Hoffmann G (1987) Bird mites as burdens, disease generators and vectors in humans and livestock. Dtsch Tierarztl Wschr 95: 7-10.
Immediato D, Figueredo LA, Iatta R, Camarda A, Nogueira de Luna RL, Giangaspero A, Brandão-Filho SP, Otranto D, Cafarchia C (2016) Essential oils and Beauveria bassiana against Dermanyssus gallinae (Acari: Dermanyssidae): toward new natural acaricides. Vet Parasitol 229: 159-165.
Isman MB (1999) Pesticides based on plant essential oils. Pestic Outlook 10: 68-72.
Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64: 8-11.
Jilani G, Saxena R C, Rueda B P (1988) Repellent and growth-inhibiting effects of turmeric oil, sweetflag oil, neem oil and Margosan-O on red flour beetle (Coleoptera: Tenebrionidae). J Econ Entomol 81: 1226-1230.
Kim SI, Na YE, Yi JH, Kim BS, Ahn YJ (2007) Contact and fumigant toxicity of oriental medicinal plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 145: 377-382.
Kim JR, Perumalsamy H, Lee JH, Ahn YJ, Lee YS, Lee SG (2016) Acaricidal activity of Asarum heterotropoides root-derived com-pounds and hydrodistillate constitutes toward Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Exp Appl Acarol 68: 485-495.
Kim SI, Na YE, Yi JH, Kim BS, Ahn YJ (2007) Contact and fumigant toxicity of oriental medicinal plant extracts against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 145: 377-382.
Kim SI, Yi JH, Tak JH, Ahn YJ (2004) Acaricidal activity of plant essential oils against Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 120: 297-304.
Koenraadt CJ, Dicke M (2010) The role of volatiles in aggregation and host-seeking of the haematophagous poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae). Exp Appl Acarol 50: 191-199.
Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oilconstituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag Sci 58: 1101-1106.
Kowalski A, Sokół R (2009) Influence of Dermanyssus gallinae (poultry red mite) invasion on the plasma levels of corticosterone, catecholamines and proteins in layer hens. Pol J Vet Sci 12: 231-235.
Lee SJ, Kim HK, Kim GH (2019) Toxicity and effects of essential oils and their components on Dermanyssus gallinae (Acari: Dermanyssidae). Exp Appl Acarol 78: 65-78.
Magdaş C, Cernea M, Baciu H, Şuteu E (2010) Acaricidal effect of eleven essential oils against the poultry red mite Dermanyssus galli-nae (Acari: Dermanyssidae). Sci Parasitol 11: 71-75.
Marangi M, Cafiero MA, Capelli G, Camarda A, Sparagano OA, Giangaspero A (2009) Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae), susceptibility to some acaricides in field populations from Italy. Exp Appl Acarol 48: 11-18.
Martinez-Velazquez M, Castillo-Herrera GA, Rosario-Cruz R, Flores-Fernandez JM, Lopez-Ramirez J, Hernandez -Gutierrez R, Lu-go-Cervantes EC (2011) Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol Res 108: 481-487.
Maurer V, Perler E, Heckendorn F (2009) In vitro efficacies of oils, silicas and plant preparations against the poultry red mite Dermanyssus gallinae. Exp Appl Acarol 48: 31-41.
Meyer-Kühling B, Pfister K, Müller-Lindloff J, Heine J (2007) Field efficacy of phoxim 50% (ByeMite) against the poultry red mite Dermanyssus gallinae in battery cages stocked with laying hens. Vet Parasitol 147: 289-296.
Miresmailli S, Bradbury R, Isman MB (2006) Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag Sci 62: 366-371.
Moreno PR, Lima ME, Sobral M, Young MC, Cordeiro I, Apel MA, Limberger RP, Henriques AT (2007) Essential oil composition of fruit colour varieties of Eugenia brasiliensis Lam. Sci Agric 64: 428-432.
Mul M, van Niekerk T, Chirico J, Maurer V, Kilpinen O, Sparagano O, Thind B, Zoons J, Moor D, Bell B, Gjevre AG, Chauve C (2009) Control methods for Dermanyssus gallinae in systems for laying hens: Results of an international seminar. World’s Poult Sci J 65: 589-600.
Muñoz-Bertomeu J, Sales E, Ros R, Arrillaga I, Segura J (2007) Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. Plant Biotechnol J 5: 746-758.
Nechita IS, Poirel MT, Cozma V, Zenner L (2015) The repellent and persistent toxic effects of essential oils against the poultry red mite, Dermanyssus gallinae. Vet Parasitol 214: 348-352.
Negahban M, Moharramipour S, Sefidkon F (2007) Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J Stor Prod Res 43: 123-128.
Piskorski R, Ineichen S, Dorn S (2011) Ability of the Oriental Fruit Moth Grapholita molesta (Lepidoptera: Tortricidae) to Detoxify Juglone, the Main Secondary Metabolite of the Non-host Plant Walnut. J Chem Ecol 37: 1110-1116.
Prabuseenivasan S, Jayakumar M, Ignacimuthu S (2006) In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 6: 39.
Raal A, Orav A, Arak E (2007) Composition of the essential oil of Salvia officinalis L. from various European countries. Nat Prod Res 21: 406-411.
Radsetoulalova I, Hubert J, Hampel D, Lichovnikova M (2020) Active components of essential oils as acaricides against Dermanyssus galli-nae. Br Poult Sci 61: 169-172.
Raele DA, Galante D, Pugliese N, La Salandra G, Lomuto M, Cafiero MA (2018) First report of Coxiella burnetii and Borrelia burgdorferi sensu lato in poultry red mites, Dermanyssus gallinae ( Mesostigmata, Acari) , related to urban outbreaks of dermati-tis in Italy. New Microbes New Infect 23: 103-109.
Rajabpour A, Mashhadi AR, Ghorbani MR (2018) Acaricidal and repellent properties of some plant extracts against poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Persian J Acarol 7: 85-91.
Rezaei F, Hashemnia M, Chalechale A, Seidi S, Gholizadeh M (2016) Prevalence of ectoparasites in free-range backyard chickens, domestic pigeons ( Columba livia domestica) and turkeys of Kermanshah province, west of Iran. J Parasit Dis 40: 448-453.
Roy L, Dowling AP, Chauve CM, Lesna I, Sabelis MW, Buronfosse T (2009) Molecular phylogenetic assessment of host range in five Der-manyssus species. Exp Appl Acarol 48: 115-142.
Shaaya E, Ravid U, Paster N, Juven B, Zisman U, Pissarev V (1991) Fumigant toxicity of essential oils against four major stored-product insects. J Chem Ecol 17: 499-504.
Sokól R, Romaniuk K (2006) Attempt to use traps to combat Dermanyssus gallinae infestation Med Weter 62: 1202-1204.
Sokół R, Szkamelski A, Barski D (2008) Influence of light and darkness on the behaviour of Dermanyssus gallinae on layer farms. Pol J Vet Sci 11: 71-73.
Sommer D, Heffels-Redmann U, Köhler K, Lierz M, Kaleta EF (2016) Role of the Poultry Red Mite ( Demanyssus gallinae) in the transmission of avian influenza A virus. Tierarztl Prax Ausg G Grosstiere Nutztiere 44: 26-33.
Sparagano OA, George DR, Harrington DW, Giangaspero A (2014) Significance and control of the poultry red mite, Dermanyssus gallinae. Annu Rev Entomol 59: 447-466.
Sparagano OA, Khallaayoune K, Duvallet G, Nayak S, George D (2013) Comparing terpenes from plant essential oils as pesticides for the poultry red mite ( Dermanyssus gallinae). Transbound Emerg Dis 60 (Suppl 2): 150-153.
Sparagano OA, Pavlicevic A, Murano T, Camarda A, Sahibi H, Kilpinen O, Mul M, van Emous R, le Bouquin S, Hoel K, Cafiero MA (2009) Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Exp Appl Acarol 48: 3-10.
Stešević D, Božović M, Tadić V, Rančić D, Stevanović ZD (2016) Plant-part anatomy related composition of essential oils and phenolic compounds in Chaerophyllum coloratum, a Balkan endemic species. Flora - Morphology, Distribution, Functional Ecology of Plants 220: 37-51.
Tabari MA, Rostami A, Khodashenas A, Maggi F, Petrelli R, Giordani C, Tapondjou LA, Papa F, Zuo Y, Cianfaglione K, Youssefi MR (2020) Acaricidal activity, mode of action, and persistent efficacy of selected essential oils on the poultry red mite ( Dermanyssus gallinae). Food Chem Toxicol 138: 111207.
Tabari MA, Youssefi MR, Benelli G (2017) Eco-friendly control of the poultry red mite, Dermanyssus gallinae (Dermanyssidae), using the α-thujone-rich essential oil of Artemisia sieberi (Asteraceae): toxic and repellent potential. Parasitol Res 116: 1545-1551.
Thind BB, Ford HL (2007) Assessment of susceptibility of the poultry red mite Dermanyssus gallinae (Acari: Dermanyssidae) to some acaricides using an adapted filter paper based bioassay. Vet Parasitol 144: 344-348.
Thompson GD, Dutton R, Sparks TC (2000) Spinosad – a case study: an example from a natural products disco very programme. Pest Manag Sci 56: 696-702.
Van Emous R (2005) Wage war against the red mite! Poultry Int 44: 26-33.
Van Emous R (2017) Verwachtte schade bloedluis 21 miljoen euro. Pluimveeweb.nl. https://www.pluimveeweb.nl//artikelen/2017/01/schade-bloedluis-21-miljoen-euro/. [Accesed Jul 26 2021].
Wójcik AR, Grygon-Franckiewicz B, Żbikowska E, Wasielewski L (2000) Invasion of Dermanyssus gallinae (De Geer, 1778) in poultry farms in the Torun region. Wiad Parazytol 46: 511-515.
Zdybel J, Karamon J, Cencek T (2011) In Vitro effectiveness Of Selected Acaricides Against Red Poultry Mites ( Dermanyssus gallinae, De Geer, 1778) Isolated From Laying Hen Battery Cage Farms Localised In Different Regions Of Poland. Bull Vet Inst Pulawy 55: 411-416.
Go to article

Authors and Affiliations

M. Roczeń-Karczmarz
1
M. Demkowska-Kutrzepa
1
J. Zdybel
2
K. Szczepaniak
1
M. Studzińska
1
K. Tomczuk
1

  1. Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
  2. Department of Parasitology and Invasive Diseases, National Veterinary Research Institute in Puławy, Al. Partyzantów 57, 24-100, Puławy, Poland
Download PDF Download RIS Download Bibtex

Abstract

The in vitro anti-Babesia canis activities of nine essential oils were investigated. Among the tested essential oils Achillea millefolium, Eugenia caryophyllus and Citrus grandis were the most active (IC50 values of 51.0, 60.3 and 61.3 μg/mL, respectively). The oils from Abies sibirica, Rosmarinus officinalis, Eucalyptus globulus, Cinnamonum zeylanicum, Mentha piperita and Pinus sylvestris were less active (IC50 values of 134.3, 237.3, 239.3, 367.9, 837.5 and 907.3 μg/mL, respectively). The results support the concept that some essential oil constituents may be useful in the clinical management of babesiosis.

Go to article

Authors and Affiliations

L. Guz
J. Ziętek
K. Puk
Ł. Adaszek
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to investigate interactions between conventional antifungal drug and essential oils against isolates of Malassezia pachydermatis. Antifungal activity of Cinnamomum cassia, Melaleuca alternifolia, Mentha piperita, Origanum vulgare and Syzygium aromaticum essential oils were tested against 19 strains of M. pachydermatis isolated from healthy dogs and reference strain M. pachydermatis CBS 1879. The checkerboard assay was used to search for in- teractions. Synergism was observed for the combination of clotrimazole with Melaleuca alternifolia essential oil, Mentha piperita and Origanum vulgare. The combinations of Cinnamomum cassia and Syzygium aromaticum essential oils with clotrimazole showed indifferent effect. Additive antimicrobial activity was observed for the combination of clotrimazole with Syzygium aromaticum and Melaleuca alternifolia essential oils against reference strain. The obtained results showed synergistic interactions between essential oils and clotrimazole which could improve effectiveness of this antifungal drug.

Go to article

Authors and Affiliations

E. Bohmova
E. Conkova
M. Harcarova
Z. Sihelska
Download PDF Download RIS Download Bibtex

Bibliography


Abdollahi A., Hassani A., Ghosta Y., Meshkatalsadat M.H., Shabani R. 2011. Screening of antifungal properties of essential oils extracted from sweet basil, fennel, summer savory and thyme against post-harvest phytopathogenic fungi. Journal of Food Safety 31: 350−356. DOI: https://doi.org/10.1111/ j.1745-4565.2011.00306.x
Abu-Darwish M.S., Efferth T. 2018. Medicinal plants from near east for cancer therapy. Frontiers in Pharmacology 9: 56. DOI: https://doi.org/10.3389/fphar.2018.00056
Abu-Lafi S., Odeh I., Dewik H., Qabajah M., Hanuš L.O., Dembitsky V.M. 2008. Thymol and carvacrol production from leaves of wild Palestinian Majorana syriaca. Bioresource Technology 99: 3914−3918. DOI: https://doi.org/10.1016/j. biortech.2007.07.042
Alagawany M., El-Hack M.A., Farag M.R., Tiwari R., Dhama K. 2015. Biological effects and modes of action of carvacrol in animal and poultry production and health-a review. Advances in Animal and Veterinary Sciences 3: 73−84. DOI: https://doi.org/10.14737/journal.aavs/2015/3.2s.73.84
Al-Reza S.M., Yoon J.I., Kim H.J., Kim J.S., Kang S.C. 2010. Anti-inflammatory activity of seed essential oil from Zizyphus jujuba. Food Chemistry Toxicology 48: 639−643. DOI: https://doi.org/10.1016/j.fct.2009.11.045
Al-Zubairi A., Al-Mamary M., Al-Ghasani E. 2017. The antibacterial, antifungal, and antioxidant activities of essential oil from different aromatic plants. Global Advanced Research Journal of Medicine and Medical Sciences 6: 224−233.
Asghari Marjanlo A., Mostofi Y., Shoeibi S., Fattahi M. 2009. Effect of cumin essential oil on post-harvest decay and some quality factors of strawberry. Journal of Medicinal Plants 3: 25−43.
Baratta M.T., Dorman H.D., Deans S.G., Biondi D.M., Ruberto G. 1998. Chemical composition, antimicrobial and antioxidative activity of laurel, sage, rosemary, oregano and coriander essential oils. Journal of Essential Oil Research 10: 618−627. DOI: https://doi.org/10.1080/10412905.1998. 9700989
Bhalodia N.R., Shukla V.J. 2011. Antibacterial and antifungal activities from leaf extracts of Cassia fistula L., an ethnomedicinal plant. Journal of Advanced Pharmaceutical Technology & Research 2: 104. DOI: https://doi.org/10.4103/2231- 4040.82956
Boubaker H., Karim H., El Hamdaoui A., Msanda F., Leach D., Bombarda I., Vanloot P., Abbad A., Boudyach E.H., Ait Ben Aoumar A. 2016. Chemical characterization and antifungal activities of four Thymus species essential oils against post-harvest fungal pathogens of citrus. Industrial Crops and Products 86: 95−101. DOI: https://doi.org/10.1016/j. indcrop.2016.03.036
Bora K.S., Sharma A. 2011. The genus Artemisia: a comprehensive review. Pharmaceutical Biology 49: 101−109. DOI: https://doi.org/10.3109/13880209.2010.497815
Camele I., Altieri L., De Martino L., De Feo V., Mancini E., Rana G.L. 2012. In vitro control of post-harvest fruit rot fungi by some plant essential oil components. International Journal of Molecular Sciences 13: 2290–2300. DOI: https:// doi.org/10.3390/ijms13022290
Chaieb K., Hajlaoui H., Zmantar T., Kahla Nakbi A.B., Rouabhia M., Mahdouani K., Bakhrouf A. 2007. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research 21: 501−506. DOI: https://doi.org/10.1002/ptr.2124
Crisosto C.H., Smilanick J.L., Dokoozlian N.K., Luvisi D.A. 1994. Maintaining table grape post-harvest quality for long distant markets. p. 195−199. In: Proceedings of the International Symposium on Table Grape Production. American Society for Enology and Viticulture, ASEV, June 28–29. Anaheim, CA, USA.
Fraternale D., Giamperi L., Bucchini A., Ricci D., Epifano F., Genovese S., Curini M. 2005. Composition and antifungal activity of essential oil of Salvia sclarea from Italy. Chemistry of Natural Compounds 41: 604−606. DOI: https://doi. org/10.1007/s10600-005-0221-9
Gilchrist-Saavedra L. 1997. Practical guide to the identification of selected diseases of wheat and barley. CIMMYT.
Grzegorczyk-Karolak I., Kuźma Ł., Lisiecki P., Kiss A. 2019. Accumulation of phenolic compounds in different in vitro cultures of Salvia viridis L. and their antioxidant and anpotential. Phytochemistry Letters 30: 324−332. DOI: https://doi.org/10.1016/j.phytol.2019.02.016
Hamini-Kadar N., Hamdane F., Boutoutaou R., Kihal M.,Henni J.E. 2014. Antifungal activity of clove (Syzygium aromaticum L.) essential oil against phytopathogenic fungi of tomato (Solanum lycopersicum L.) in Algeria. Journal of Experimental Biology and Agricultural Sciences 2: 447−454.
Hosseini M.H., Razavi S.H., Mousavi S.M.A., Yasaghi S.A.S., Hasansaraei A.G. 2008. Improving antibacterial activity of edible films based on chitosan by incorporating thyme and clove essential oils and EDTA. Journal of Applied Sciences 8: DOI: https://doi.org/2895−2900.10.3923/jas. 2008.2895.2900
Javed H., Erum S., Tabassum S., Ameen F. 2013. An overview on medicinal importance of Thymus vulgaris. Journal of Asian Scientific Research 3: 974.
Jaradat N.A., Zaid A.N., Al-Ramahi R., Alqub M.A., Hussein F., Hamdan Z., Mustafa M., Qneibi M., Ali I. 2017. Ethnopharmacological survey of medicinal plants practiced by traditional healers and herbalists for treatment of some urological diseases in the West Bank/Palestine. BMC Complementary Medicine and Therapies 17: 255. DOI: https:// doi.org/10.1186/s12906-017-1758-4
Kordali S., Cakir A., Ozer H., Cakmakci R., Kesdek M., Mete E. 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technology 99: 8788−8795. DOI: https://doi. org/10.1016/j.biortech.2008.04.048
Lazar-Baker E., Hetherington S., Ku V., Newman S. 2011. Evaluation of commercial essential oil samples on the growth of post-harvest pathogen Monilinia fructicola (G. Winter) Honey. Letters in Applied Microbiology 52: 227−232. DOI: https://doi.org/10.1111/j.1472-765X.2010.02996.x
Martinez K., Ortiz M., Albis A., Gilma Gutierrez Castaneda C., Valencia M.E., Grande Tovar C.D. 2018. The effect of edible chitosan coatings incorporated with Thymus capitatus essential oil on the shelf-life of strawberry (Fragaria × ananassa) during cold storage. Biomolecules 8: 155. DOI: https:// doi.org/10.3390/biom8040155
Matusinsky P., Zouhar M., Pavela R., Novy P. 2015. Antifungal effect of five essential oils against important pathogenic fungi of cereals. Industrial Crops and Products 67: 208−215. DOI: https://doi.org/10.1016/j.indcrop.2015.01.022
Militello M., Settanni L., Aleo A., Mammina C., Moschetti G., Giammanco G.M., Blazquez M.A., Carrubba A. 2011. Chemical composition and antibacterial potential of Artemisia arborescens L. essential oil. Current Microbiology 62: 1274−1281. DOI: https://doi.org/10.1007/s00284-010- 9855-3
Momen F.M., Amer S.A.A., Refaat A.M. 2001. Repellent and oviposition-deterring activity of rosemary and sweet marjoram on the spider mites Tetranychus urticae and Eutetranychus orientalis (Acari: Tetranychidae). Acta Phytopathologica et Entomologica Hungarica 36: 155−164. DOI: https:// doi.org/10.1556/aphyt.36.2001.1-2.18
Mossa A.T.H. 2016. Green pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology 9: 354. DOI: https://doi:10.3923/ jest.2016.354.378
Mothana R.A., Al-Said M.S., Al-Yahya M.A., Al-Rehaily A.J., Khaled J.M. 2013. GC and GC/MS analysis of essential oil composition of the endemic soqotraen Leucas virgata Balf.f. and its antimicrobial and antioxidant activities. International Journal of Molecular Sciences 14: 23129−23139. DOI: https://doi.org/10.3390/ijms141123129
Moura Martins C., de Morais S.A., Martins M.M., Cunha L.C., da Silva C.V., Teixeira T.L., Santiago M.B., de Aquino F.J., Nascimento E.A., Chang R., Martins C.H. 2020. Antifungal and cytotoxicity activities and new proanthocyanidins isolated from the barks of Inga laurina (Sw.) Willd. Phytochemistry Letters 40: 109−120. DOI: https://doi.org/10.1016/j. phytol.2020.10.001
Nejad S.M., Ozgunes H., Basaran N. 2017. Pharmacological and toxicological properties of eugenol. Turkish Journal of Pharmaceutical Sciences 14: 201−206. DOI: https://doi.org/10.4274/tjps.62207
Obeng-Ofori D., Reichmuth C.H. 1997. Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera. International Journal of Pest Management 43: 89−94. DOI: https:// doi.org/10.1080/096708797229040
Olsen R.W. 2000. Absinthe and gamma-aminobutyric acid receptors. p. 4417−4418. In: Proceedings of the National Academy of Sciences of the United States of America, 97. DOI: https://doi.org/10.1073/pnas.97.9.4417
Park J.B. 2011. Identification and quantification of a major antioxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme. International Journal of Food Sciences and Nutrition 62: 577−584. DOI: https://doi.org/10.3109/09637486.2 011.562882
Phillips C.A., Laird K., Allen S.C. 2012. The use of Citri-V™® An antimicrobial citrus essential oil vapour for the control of Penicillium chrysogenum, Aspergillus niger and Alternaria alternata in vitro and on food. Food Research International 47: 310−314. DOI: https://doi.org/10.1016/j. foodres.2011.07.035
Pinto E., Vale-Silva L., Cavaleiro C., Salgueiro L. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology 58: 1454–1462. DOI: https://doi.org/10.1099/jmm.0.010538-0
Politeo O., Carev I., Burčul F., Jukić M., Ajduković P., Tadijana V., Miloš M. 2010. Screening of anti-acetylcholineesterase and antioxidant activity of extracts from selected Croatian plants. In: Proceedings of the 10th Congress of the Croatian Society of Biochemistry and Molecular Biology, 15−18 September 2010, Opatija, Hrvatska, Croatia. Porte A., Godoy R.L.O., Maia-Porte L.H. 2013. Chemical composition of sage (Salvia officinalis L.) essential oil from the Rio de Janeiro State (Brazil). Revista Brasileira de Plantas Medicinais 15: 438−441. DOI: https://doi.org/10.1590/ S1516-05722013000300018
Rajkowska K., Nowak A., Kunicka-Styczyńska A., Siadura A. 2016. Biological effects of various chemically characterized essential oils: Investigation of the mode of action against Candida albicans and HeLa cells. RSC Advances 6: 97199−97207. DOI: https://doi.org/10.1039/C6RA21108A
Rozman V., Kalinović I., Liška A. 2006. Bioactivity of 1,8-cineole, camphor and carvacrol against rusty grain beetle (Chryptolestes ferrugineus Steph.) on stored wheat. In: Proceeding of the 9th International Working Conference on Stored Product Protection, 15−18 October 2006, Abrapos, Passo Fundo, Brazil.
Sabbo Behr., Hejaz H., Jahajha A., Al-Akhras S., Al-Jaas H., Abu-Lafi S. 2016. Antioxidant an antimicrobial activities of the leaf extract of Salvia palaestina. Journal of Applied Pharmaceutical Science 6: 76. DOI: https://doi: 10.7324/ JAPS.2016.600113
Samara R., Hunter D.M., Stobbs L.W., Greig N., Lowery D.T., Delury N.C. 2017. Impact of Plum Pox Virus (PPV-D) infection on peach tree growth, productivity and bud cold hardiness. Canadian Journal of Plant Pathology 39: 218−228. DOI: https://doi.org/10.1080/07060661.2017.1336489
SAS Institute, 1998. SAS Users Guide, Statistics. Version 2. SAS Institute, Cary, NC. Shah A., Jani M., Shah H., Chaudhary N., Shah A. 2014. Antimicrobial effect of Clove oil (Laung) extract on Enterococcus faecalis. Journal of Advanced Oral Research 5: 36−38. DOI: https://doi.org/10.1177/2229411220140307
Shirzad H., Hassani A., Ghosta Y., Abdollahi A., Finidokht R., Meshkatalsadat M. 2011. Assessment of the antifungal activtimicrobiality of natural compounds to reduce postharvest gray mould (Botrytis cinerea Pers.: Fr.) of kiwifruits (Actinidia deliciosa) during storage. Journal of Plant Protection Research 51 (1): 1−6. DOI: https://doi.org/10.2478/v10045-011-0001-4
Shoaib A., Saeed G., Ahmad S. 2014. Antimicrobial activity and chemical analysis of some edible oils (Clove, Kalonji and Taramira). African Journal of Biotechnology 13: 4347−4354. DOI: https://doi.org/10.5897/AJB2014.13683
Sighamony S., Anees I., Chandrakala T.S., Osmani Z. 1986. Efficacy of certain indigenous plant products as grain protectants against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). Journal of Stored Products Research 22: 21−23. DOI: https://doi.org/10.1016/0022-474X(86)90042-1
Snowdon A.L. 1990. Color atlas of post-harvest diseases and disorders of fruits and vegetables. Vol. 1. In: "General Introduction and Fruits". CRC Press, Boca Raton FL.
Taylor S. 1993. Why sulfite alternatives? Food Technology 47: 14. Thosar N., Basak S., Bahadure R.N., Rajurkar M. 2013. Antimicrobial efficacy of five essential oils against oral pathogens: An in vitro study. European Journal of Dentistry 7: 71−77. DOI: https://doi/org/10.4103/1305-7456.119078
Vitoratos A., Bilalis D., Karkanis A., Efthimiadou A. 2013. Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Notulae Botanicae Horti Agrobotanici 41: 86−92. DOI: https://doi. org/10.15835/nbha4118931
Zabka M., Pavela R. 2013. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere 93: 1051−1056. DOI: https://doi.org/10.1016/j.chemosphere.2013.05.076
Go to article

Authors and Affiliations

Rana Samara
1
ORCID: ORCID
Tawfiq Qubbaj
2
ORCID: ORCID
Ian Scott
3
ORCID: ORCID
Tim Mcdowell
3

  1. Horticulture and Agricultural Extension, Palestine Technical University-Kadoorie, Tulkarm, Palestine
  2. Department of Plant Production and Protection, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus, Palestine
  3. London Research and Development Centre, Agriculture and Agri-Food Canada, Canada
Download PDF Download RIS Download Bibtex

Abstract

Luffa cylindrica M. Roem, is commonly called sponge gourd or Egyptian cucumber. In September 2018, several plants showing symptoms of powdery mildew were observed in some fields at different locations in Egypt. Identification and pathogenicity tests indicated that the causal fungus of powdery mildew disease of luffa cylindrica was Podosphaera xanthii. Results of surveyed luffa plants grown at different field localities of northern Egypt, for powdery mildew disease incidence revealed that the maximum record (57.33%) of disease occurrence was recorded in some fields belonging to Beheira governorate followed by, Alexandria and Sharqia (53.67% and 48.00%, respectively). Meanwhile, fewer occurrences were observed in Kafer El-Sheekh governorate (45.33%). We applied biocontrol agents as a foliar spray against powdery mildew in vitro and under field conditions. The effects of some essential oils, organic acid and bioproducts were also studied. All treatments significantly reduced P. xanthii compared to untreated plants. Chaetomium globosum and Saccharomyces cerevisiae alone or grown on rice straw and/or bagas showed highly reduced disease incidence compared to the other treatment. From the present study it could be suggested that the usage of biocontrol formulated on rice straw might be used as an easily applied, safe and cost effective control method against powdery mildew diseases.

Go to article

Authors and Affiliations

Nadia Gamil Elgamal
Mohamed Saeed Khalil
Download PDF Download RIS Download Bibtex

Abstract

Today the use of plant extracts, in particular essential oils, is a natural alternative to synthetic insecticides in the fight against crop pests. In this study, the insecticidal activity of essential oils and powder of Xylopia aethiopica (Annonaceae) were tested by both fumigation and contact against Callosobruchus maculatus. The essential oil of X. aethiopica, obtained by steam distillation and the powder, with a particle size of 1 mm, were used for the tests. The analysis of essential oils and powder of X. aethiopica by GC-MS/FID and GC/MS-HS-SPME, showed that the main compounds were β-pinene (28.9–19.0%), 1,8-cineole (14.9–7.6%) and α-pinene (9.8–19.4%). Insecticidal activity of essential oils and powder of X. aethiopica, respectively, by fumigation (F) and contact (C) against C. maculatus showed toxicity LD50 = 0.2 ± 0.0 μl.cm–3, LT50 = 16.4 ± 1.2 hours (F) and LD50 = 9.2 ± 0.7 g.kg–1, LT50 = 69.6 ± 0.4 hours (C). The essential oil and powder of X. aethiopica can be considered as bio-insecticides against C. maculatus for the protection of cowpeas in Senegal.
Go to article

Bibliography


Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.
Adams R. 2007. Identification of Essential Oil Components by Gas Chromatography/Qua-drupole Mass Spectrometry. 4th ed., Allured Publishing Co, Carol Stream IL., USA.
Adedire C.O., Obembe O.M., Akinkurolere R.O., Oduleye S.O. 2011. Response of Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) to extracts of cashew kernels. Journal of Plant Diseases and Protection 118 (2): 75–79. DOI: 10.1007/BF03356385
Ahmed S., Khan M.A., Ahmad N. 2002. Determination of susceptibility level of phosphine in various strains of dhora (Callosobruchus maculatus F.). International Journal of Agriculture and Biology 4: 329–331.
ANSD. 2018. Bulletin mensuel des statistiques économiques. Ministère de l’économie, des finances et du plan Sénégal, 140 pp. (in French)
Beck C.W., Bulmer L.S.A. 2014. Handbook on Bean Beetles, Callosobruchus maculatus. Texas A&M AgriLife Extension, Cowpea Weevils.
Boniface Y., Jean-Pierre N, Philippe S., Félicien A., Dominique S. 2010. Etude chimique et activités antimicrobiennes d’extraits volatils des feuilles et fruits de Xylopia aethiopica (DUNAL) A. Richard contre les pathogènes des denrées alimentaires. Journal de la Société́ Ouest-Africaine de Chimie 29: 19–27.
Chougourou D.C., Alavo T.B.C. 2011. Systèmes de stockage et méthodes endogènes de lutte contre les insectes ravageurs des légumineuses à grains entreposées au Centre Bénin. Conseil Africain et Malgache de Enseignement Supérieur - Série A 12 (2): 137–141.
Diop S.M., Gueye M.T., Ndiaye I., Ndiaye E.H.B., Diop M.B., Thiam A., Fauconnier, M.L. and Lognay G. 2017. Study of the chemical composition of essential oils and floral waters of Cymbopogon citratus (DC.) Stapf (Poaceae) from Senegal. International Journal of Biological and Chemical Sciences 11 (4): 1884–1892. DOI: 10.4314/ijbcs.v11i4.37
Edwin E., Regina A., Ifeoma V. 2018. Insecticidal activity of Xylopia aethiopica (Family; Annonaceae) against Callosobruchus maculatus (F) (Coleoptera: Bruchidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Journal of Biological Studies 1 (3): 106–115.
Edwin I.E., Jacob I.E. 2017. Bio-insecticidal potency of five plant extracts against Cowpea Weevil, Callosobruchus maculatus (F.), on Stored Cowpea, Vigna unguiculata (L). Jordan Journal of Biological Sciences 10 (4): 317-322.
Enan E. 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 130 (3): 325–337. DOI: 10.1016/S1532-0456(01)00255-1.
Fernando H.S., Karunaratne M.M. 2012. Ethnobotanicals for storage insect pest management: Effect of powdered leaves of Olax zeylanica in suppressing infestations of rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Journal of Tropical Forestry and Environment 2: 20–25.
Guèye M.T., Seck D., Wathelet J.P., Lognay G. 2011. Lutte contre les Ravageurs des stocks de céréales et de légumineuses au Sénégal et en Afrique occidentale: synthèse bibliographique. Biotechnology, Agronomy, Society and Environment 15 (1): 183–194.
Ilboudo Z. 2009. Activité Biologique de quatre huiles essentielles contre Callosobruchus maculatus Fab. (Coleoptera : Bruchidae), insecte ravageur des stocks de niébé au Burkina Faso », Entomologie, Université de Ouagadougou, Burkina Fasso, 150 pp.
Isman M.B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51 (1): 45–66. DOI: 10.1146/annurev.ento.51.110104.151146
Jirovetz L., Wobus A., Buchbauer G., Shafi M.P., Thampi P.T. 2004. Comparative analysis of the essential oil and SPME-headspace aroma compounds of Cyperus rotundus L. roots/tubers from South-India using GC, GC-MS and olfactometry, Journal of Essential Oil Bearing Plants 7 (2): 100–106. DOI: 10.1080/0972-060X.2004.10643373
Joulain D., König W. 1998. The Atlas of Sesquiterpene Data Hydrocarbons. EB Verlag, Hamburg, Germany. ISBN 3-930826-48-8.
Kabir B.G.J. 2013. Laboratory evaluation of efficacy of three Diatomaceous earth formulations against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) in stored wheat. European Scientific Journal 30 (9): 116–124.
Kayombo M.A., Mutombo T.J.M, Somue M.A., Muka M.P., Wembonyama O.M., Tshibangu B.K.E., Kaboko K.J. 2014. Effet de la poudre de Basilic (Ocimum basilicum) dans la conservation des graines de Niébé (Vigna unguiculata L. Walp.) en stock contre Callosobruchus maculatus F. à Mbuji- Mayi (RD. Congo). Congo sciences 2 (2): 61–66.
Keane S., Ryan M.F. 1999. Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochemistry and Molecular Biology 29 (12): 1097–1104. DOI: 10.1016/S0965-1748(99)00088-0
Koffi S.E., Roger H.C.N., Kodjo E., Kokou A.A., Kokouvi D., Honoré K.K. 2012. Chemical composition and insecticidal activity of Xylopia aethiopica (Dunal) A. Rich (Annonaceae) essential oil on Callosobruchus maculatus. Journal de la Societé Ouest-africaine de Chimie 34: 71–77.
Korunic Z. 1998. Review Diatomaceous earths, a group of natural insecticides. Journal of Stored Products Research 34 (2–3): 87–97. DOI: 10.1016/S0022-474X(97)00039-8
Kostyukovsky K., Rafaeli A., Gileadi C., Demchenko N., Shaaya E. 2002. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Management Science 58 (11): 1101–1106. DOI: 10.1002/ps.548
Kouninki H., Hance T.F.A., Noudjou F.A., Lognay G., Malaisse F., Ngassoum M.B., Mapongmetsem P.M., Ngamo T.L.S., Haubruge E. 2007. Toxicity of some terpenoids of essential oils of Xylopia aethiopica from Cameroon against Sitophilus zeamais Motschulsky. Journal of Applied Entomology 131 (4): 269–274.
Mills C., Cleary B.V., Walsh J.J., Gilmer J.F. 2010. Inhibition of acetylcholinesterase by Tea Tree oil. Journal of Pharmacy and Pharmacology 56 (3): 375–379. DOI: 10.1211/0022357022773
Mukendi K.R., Ntanga N.R., Kaseba K.S., Tshiamala N., Kamukenji A. and Mpoyi K.G. 2016. Dégâts des bruches sur le pouvoir germinatif des graines de quatre variétés de Niébé infesté pendant 60 jours à Ngandajika. Journal of Applied Biosciences 98: 9323–9329. DOI: http://dx.doi.org/10.4314/jab.v98i1.8
Ndiaye E.H.B., Gueye M.T., Ndiaye I., Diop S.M., Diop M.B., Thiam A., Fauconnier M.L., Lognay G. 2017. Chemical composition of distilled essential oils and hydrosols of four senegalese citrus and enantiomeric characterization of chiral compounds. Journal of Essential Oil Bearing Plants 20 (3): 820–834.
Ngamo L., Hanc T.H. 2007. Diversité des ravageurs des denrées et méthodes alternatives de lutte en milieu tropical. Tropicultura 25 (4): 215–220.
Nguemtchouin M.G.M. 2012. Formulation d’insecticides en poudre par adsorption des huiles essentielles de Xylopia aethiopica et de Ocimum gratissimum sur des argiles camerounaises modifiées. Thèse doctotat en cotutelle, universités Ngaoundere et Montpellier, 293 pp.
Sahaf B.Z., Moharramipour S., Meshkatalsadat M.H. 2008. Fumigant toxicity of essential oil from Vitex pseudo-negundo against Tribolium vastaneum (Herbst) and Sitophilus orzae (L.). Journal of Asia-Pacific Entomology 11 (4): 175–179.
Sarwar M., Ahmad N., Bux M., Tofique M. 2012. Potential of plant materials for the management of cowpea bruchid Callosobruchus analis (Coleoptera: Bruchidae) in gram Cicer arietinum during storage. The Nucleus 49 (1): 61–64.
Sattelle D.B., Pinnock R.D., Wafford K.A., David J.A. 1988. GABA receptors on the cell-body membrane of an identified insect motor neuron. Proceedings of the Royal Society B: Biological Sciences 232(1269): 443-456. DOI: 10.1098/rspb.1988.0006
Thiam A., Guèye M.T., Ndiaye I., Diop S.M., Ndiaye E.H.B., Fauconnier M.L., Lognay G. 2018. Effect of drying methods on the chemical composition of essential oils of Xylopia aethiopica fruits (Dunal) A. Richard (Annonaceae) from southern Senegal. American Journal of Essential Oils and Natural Products 6 (1): 25–30.
Thiam A., Gueye M.T., Sanghare C.H., Ndiaye E.H.B., Diop S.M., Cissokho P.S., Diop M.B., Ndiaye I., Fauconnier M.L. 2020. Chemical composition and anti-inflammatory activity of Apium graveolens var. dulce essential oils from Senegal. American Journal of Food Science and Technology 8 (6): 226–232. DOI: 10.12691/ajfst-8-6-1.
Go to article

Authors and Affiliations

Abdoulaye Thiam
1 2
ORCID: ORCID
Momar Talla Guèye
2
Cheikhna Hamala Sangharé
1 2
Papa Seyni Cissokho
2
Elhadji Barka Ndiaye
1
Serigne Mbacké Diop
1
Michel Barka Diop
3
Ibrahima Ndiaye
1
Marie Laure Fauconnier
4

  1. Department of Chemistry, Faculty of Sciences and Techniques, Cheikh Anta Diop University, Dakar, Senegal
  2. Laboratory of Phytosanitary Analyses, Institute of Food Technology, Dakar, Senegal
  3. Unit of Training and Research of Agronomic Sciences, Aquaculture and Food Technology (S2ATA), Gaston Berger University, Saint-Louis, Senegal
  4. General and Organic Chemistry Laboratory, Gembloux Agro-Bio-Tech University of Liege, Gembloux, Belgium
Download PDF Download RIS Download Bibtex

Abstract

The adverse effects of synthetic acaricides on humans, animals, non-target organisms and the ecosystem are serious problems. Thus, there is a new trend to use nanotechnology for developing new, natural, bio and safe acaricides for mite control in green-pest management. This is the first work for preparing a nanoformulation of rosemary essential oil (EO) and evaluating its effect against the two-spotted spider mite Tetranychus urticae Koch. GC/MS analysis of rosemary EO showed that 1,8 cineole (31.45%), borneol (11.07%), α-pinene (10.91%), D-limonene (9.19%), L-linalool (8.86%), D-camphor (7.32%), γ-terpinene (3.92%), linalyl acetate (3.37%), α-terpineol (3.32%), and p-cymene (1.82%) were the major components. After 6 min of sonication, a nanoemulsion of rosemary EO was formulated with a droplet size of 139.9 nm. The balance between oil (lyophilic) and surfactant (hydrophilic) was correlated with the droplet size and the stability of the nanoemulsion. Spray application of rosemary nanoemulsion showed high acaricidal activity against immature and adult two-spotted spider mites T. urticae with LC50 723.71 and 865.68 μg · ml−1 and the toxicity increased by 54.15 and 52.69% for immature and adult mites, respectively. There were no toxic effects or mortality of rats treated with rosemary nanoemulsion. High acaricidal activity, stability, and safety of rosemary nanoemulsion make this nanoformulation a possible green and nano-acaricidal product. Further studies under field conditions are necessary to study the acaricidal efficiency of rosemary nanoemulsion against two-spotted spider mites and the toxic effect on predacious mites.

Go to article

Authors and Affiliations

Abdel-Tawab H. Mossa
Sahar I. Afia
Samia M.M. Mohafrash
Badawi A. Abou-Awad
Download PDF Download RIS Download Bibtex

Abstract

A current problem in candidiasis treatment is increasing resistance to azoles, which are often prescribed to patients. The study underlines the high resistance of yeasts to fluconazole, which achieved high MIC (minimal inhibitory concentration) values both alone and in combination with essential oils (EOs). Antifungal activity of Hyssopus officinalis, Thymus vulgaris, Salvia officinalis and Rosmarinus officinalis EOs was determined against 13 clinical isolates of Candida albicans and reference strain Candida albicans ATCC 10231. The synergistic effect was investigated for the combination of itraconazole and fluconazole with Hyssopus officinalis and Thymus vulgaris EOs. Based on the fractional inhibitory concentration index, the synergistic effect was achieved in all of the samples exposed to itraconazole with Hyssopus officinalis (FICI 0.3±0.06). On the other side, the additive effect was proven in use of itraconazole with Thymus vulgaris (FICI 0.75±0.35) and fluconazole with both EOs tested (FICI 0.81±0.19; 0.88±0.57) This study shows the importance of monitoring the synergistic effect of antifungals combined with EOs, because it is a possible solution for reducing the resistance and improving the disease prognosis.
Go to article

Bibliography


Alexa E, Sumalan RM, Danciu C, Obistioiu D, Negrea M, Poiana MA, Rus C, Radulov I, Pop G, Dehelean C (2018) Synergistic antifungal, allelopatic and anti-proliferative potential of Salvia officinalis L., and Thymus vulgaris L. essential oils. Molecules 23: 185.
Baj T, Biernasiuk A, Wróbel R, Malm A (2020) Chemical composition and in vitro activity of Origanum vulgare L., Satureja hortensis L., Thymus serpyllum L. and Thymus vulgaris L. essential oils towards oral isolates of Candida albicans and Candida glabrata. Open Chem 18: 108-118.
Bolatchiev A, Baturin V, Bazikov I, Maltsev A, Kunitsina E (2020) Effect of antimicrobial peptides HNP-1 and hBD-1 on Staphylococcus aureus strains in vitro and in vivo. Fundam Clin Pharmacol 34: 102-108.
Bona E, Cantamessa S, Pavan M, Novello G, Massa N, Rocchetti A, Berta G, Gamalero E (2016) Sensitivity of Candida albicans to essential oils: are they an alter native to antifungal agents? J Appl Microbiol 121: 1530-1545.
Bueno JG, Martinez C, Zapata B, Sanclemente G, Gallego M, Mesa AC (2010) In vitro activity of fluconazole, itraconazole, voriconazole and terbinafine against fungi causing onychomycosis. Clin Exp Dermatol 35: 658-663.
Cavalcanti YW, Almeida LF, Padilha WW (2011) Anti adherent activity of Rosmarinus officinalis essential oil on Candida albicans: an SEM analysis. Rev Odonto Ciênc 26: 139-144.
CDC (2019) Fungal Diseases. https://www.cdc.gov/fungal//diseases/candidiasis/index.html
CLSI, Clinical and Laboratory Standards Institute (2008) M27-A3: Reference Method for Broth Dilution Anti fungal Susceptibility Testing of Yeasts. 3rd ed. USA: Wayne, PA.
de Oliveira Santos GC, Vasconcelos CC, Lopes AJ, de Sousa Cartágenes M, Filho AK, do Nascimento FR, Ramos RM, Pires ER, de An-drade MS, Rocha FM, de Andrade Monteiro C (2018) Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol 9: 1351.
Dignani MC, Solomkin JS, Anaissie EJ (2009) Candida. In: Anaissie EJ, McGinnis MR, Pfaller MA (eds) Clinical mycology. Churchill Livingstone, London, pp 197-229.
Duarte MC, Figueira GM, Sartoratto A, Rehder VL, Delarmelina C (2005) Anti-Candida activity of Brazilian medicinal plants. J Ethnopharmacol 97: 305-311.
Elansary HO, Abdelgaleil SA, Mahmoud EA, Yessoufou K, Elhindi K, El-Hendawy S (2018) Effective antioxidant, antimicrobial and anti-cancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement Altern Med 18: 214.
Fani M, Kohanteb J (2017) In vitro antimicrobial activity of Thymus vulgaris essential oil against major oral pathogens. J Evid Based Complementary Altern Med 22: 660-666.
Hristova Y, Wanner J, Jirovetz L, Stappen I, Iliev I, Gochev V (2015) Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Candida species. Biotechnol Biotechnol Equip 29: 592-601.
Karpiński TM (2020) Essential oils of Lamiaceae family plants as antifungals. Biomolecules 10: 103.
Martins N, Ferreira IC, Barros L, Silva S, Henriques M (2014) Candidiasis: predisposing factors, prevention, diagnosis and alternative treat-ment. Mycopathologia 177: 223-240.
Nelson M, Wanjiru W, Margaret M (2013) Identification and susceptibility profile of vaginal Candida species to antifungal agents among pregnant women attending the antenatal clinic of Thika District Hospital, Kenya. Open J Med Microbiol 3: 239-247.
Nuzhat T, Vidyasagar GM (2014) Antifungal investigations on plant essential oils. A review. Int J Pharm Pharm Sci 5 (Suppl 2): 19-28.
Oksuz S, Sahin I, Yildirim M, Gulcan A, Yavuz T, Kaya D, Koc AN (2007) Phospholipase and proteinase activities in different Candida species isolated from anatomi cally distinct sites of healthy adults. Jpn J Infect Dis 60: 280-283.
Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, Rodloff A, Fu W, Ling TA (2010) Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voricona-zole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48: 1366-1377.
Pristov KE, Ghannoum MA (2019) Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect 25: 792-798.
Příborský J (2018) Antimykotika. In: Švihovec J, Bultas J, Anzenbacher P, Chládek J, Příborský J, Slíva J, Votava M (eds) Farmakologie. Grada, Česká Republika, pp 773-782.
Raut JS, Karuppayil SM (2014) A status review on the medi cinal properties of essential oils. Ind Crops Prod 62: 250-264.
Scalas D, Mandras N, Roana J, Tardugno R, Cuffini AM, Ghisetti V, Benvenuti S, Tullio V (2018) Use of Pinus sylvestris L.(Pinaceae), Origanum vulgare L.(Lamiaceae), and Thymus vulgaris L.(Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains. BMC Complement Altern Med 18: 143.
Sookto T, Srithavaj T, Thaweboon S, Thaweboon B, Shrestha B (2013) In vitro effects of Salvia officinalis L. essential oil on Candida albicans. Asian Pac J Trop Biomed 3: 376-380.
Vlase L, Benedec D, Hanganu D, Damian G, Csillag I, Sevastre B, Mot AC, Silaghi-Dumitrescu R, Tilea I (2014) Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 19: 5490-5507.
Wall G, Lopez-Ribot JL (2020) Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics (Basel) 9: 445.
Go to article

Authors and Affiliations

M. Proškovcová
1
E. Čonková
1
P. Váczi
1
D. Marcinčáková
1
M. Harčárová
2

  1. Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
  2. Department of Animal Nutrition and Husbandry, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Candida albicans, a polymorphic yeast, is a physiological component of the human and animal commensal microbiome. It is an etiological factor of candidiasis, which is treated by azole antifungals. Growing resistance to azoles is a reason to look for other alternative treatment options. The pharmacotherapeutic use of plant extracts and essential oils has become increasingly important. In our experiment, C. albicans showed susceptibility to four observed plant extracts and essential oils from peppermint ( Mentha piperita), thyme ( Thymus vulgaris), sage ( Salvia officinalis), and oregano ( Origanum vulgare). Oregano plant extract and essential oil showed the highest antifungal activity, at MIC values of 4.9 mg/mL and 0.4 mg/mL respectively. Therefore, it was subjected to further research on the influence of virulence factors – biofilm formation, extracellular phospholipase production and germ tube formation. Oregano plant extract and essential oil showed an inhibitory effect on the observed C. albicans virulence factors at relatively low concentrations. The extract inhibited the adherence of cells at MIC 12.5 mg/mL and essential oil at MIC 0.25 mg/mL. Degradation of the formed biofilm was detected at MIC 14.1 mg/mL for plant extract and at MIC 0.4 mg/mL for essential oil. Extracellular phospholipase production was most effectively inhibited by the essential oil. In particular, the number of isolates with intensive extracellular phospholipase production decreased significantly. Of the 12 isolates intensively producing extracellular phospholipase, only 1 isolate (4.5%) retained intense production. Essential oil caused up to a 100 % reduction in germ tubes formation and plant extract reduced their formation depending on the concentration as follows: 2.6% (0.8 mg/mL), 21.2 % (6.25 mg/mL), and 64.5 % (12.5 mg/mL) compared to the control.
Go to article

Bibliography

1. Brondani LP, da Silva Neto TA, Freitag RA, Lund RG (2018) Evaluation of anti-enzyme properties of Origanum vulgare essential oil against oral Candida albicans. J Mycol Med 28: 94-100.
2. CLSI, Clinical and Laboratory Standards Institute (2017) M27-A3: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. 4th ed. USA: Wayne, PA.
3. de Souza Ramos L, Barbedo LS, Braga-Silva LA, dos Santos AL, Pinto MR, da Graça Sgarbi DB (2015) Protease and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol 32: 122-125.
4. Doke SK, Raut JS, Dhawale S, Karuppayil SM (2014) Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. J Gen Appl Microbiol 60: 163-168.
5. Edelmann A, Krüger M, Schmid J (2005) Genetic relationship between human and animal isolates of Candida albicans. J Clin Micro-biol 43: 6164-6166.
6. Ellepola AN, Samaranayake LP, Khan ZU (2016) Extracellular phospholipase production of oral Candida albicans isolates from smok-ers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimy-cotics. Braz J Microbiol 47: 911-916.
7. Fule SR, Das D, Fule RP (2015) Detection of phospholipase activity of Candida albicans and non albicans isolated from women of reproductive age with vulvovaginal candidiasis in rural area. Indian J Med Microbiol 33: 92-95.
8. Jin Y, Yip HK, Samaranayake YH, Yau JY, Samaranayake LP (2003) Biofilm-forming ability of Candida albicans is unlikely to con-tribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol 41: 2961-2967.
9. Kumamoto CA, Gresnigt MS, Hube B (2020) The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Curr Opin Microbiol 56: 7-15.
10. Lee H, Woo ER, Lee DG (2018) Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res 18: 10.1093.
11. Martins N, Ferreira IC, Barros L, Silva S, Henriques M (2014) Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 177: 223-240.
12. Mattei AS, Alves SH, Severo CB, da Silva Guazzelli L, de Mattos Oliveira F, Severo LC (2013) Determination of germ tube, phos-pholipase, and proteinase production by bloodstream isolates of Candida albicans. Rev Soc Bras Med Trop 46: 340-342.
13. Mohandas V, Ballal M (2011) Distribution of Candida species in different clinical samples and their virulence: biofilm formation, pro-teinase and phospholipase production: a study on hospitalized patients in southern India. J Glob Infect Dis 3: 4-8.
14. Nagy M, Mučaji P, Grančai D (2017) Pharmacognosy. Biologically active plant metabolites and their sources, 2nd ed., Bratislava, Herba.
15. Pozzatti P, Loreto ES, Nunes Mario DA, Rossato L, Santurio JM, Alves SH (2010) Activities of essential oils in the inhibition of Can-dida albicans and Candida dubliniensis germ tube formation. J Mycol Med 20: 185-189.
16. Pristov KE, Ghannoum MA (2019) Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect 25: 792-798.
17. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crop Prod 62: 250-264.
18. Rossoni RD, Barbosa JO, Vilela SF, dos Santos JD, Jorge AO, Junqueira JC (2013) Correlation of phospholipase and proteinase pro-duction of Candida with in vivo pathogenicity in Galleria mellonella. Braz J Oral Sci 12: 199-204.
19. Ruchi T, Sujata B, Anuradha D (2015) Comparison of phenotypic methods for the detection of biofilm production in uro-pathogens in a tertiary care hospital in India. Int J Curr Microbiol App Sci 4: 840-849.
20. Seyedmousavi S, Bosco SM, de Hoog S, Ebel F, Elad D, Gomes RR, Jacobsen ID, Jensen HE, Martel A, Mignon B, Pasmans F, Piecková E, Rodrigues AM, Singh K, Vicente VA, Wibbelt G, Wiederhold NP, Guillot J (2018) Fungal infections in animals: a patch-work of different situations. Med Mycol 56 (Suppl 1): 165-187.
21. Silva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M (2017) Candida species biofilms’ antifungal resistance. J Fungi (Ba-sel) 3: 8.
22. Vitális E, Nagy F, Tóth Z, Forgács L, Bozó A, Kardos G, Majoros L, Kovács R (2020) Candida biofilm production is associated with higher mortality in patients with candidaemia. Mycoses 63: 352-360.
Go to article

Authors and Affiliations

P. Váczi
1
M. Proškovcová
1
E. Čonková
1
D. Marcinčáková
1
M. Bačkorová
2
M. Harčárová
3

  1. Department of Pharmacology and Toxicology
  2. Department of Pharmaceutical Technology, Pharmacognosy and Botany
  3. Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, 041 81, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition of commercial thyme oils, freshly hydrodistilled EO (essetntial oil) from dried thyme herb and thymol, the main thyme oil constituent, were analyzed in the aspect of possible cytotoxic effect against MCF-7 breast cancer and normal L929 mouse fibroblast cell lines. Based on the GC-MS analysis, it was found that the commercial essential oils revealed similarities in their chemical composition. The content of main components such as thymol, linalool and α-pinene was almost equal. Interestingly, the EO obtained by hydrodistillation from Thymi herba showed considerable differences in the percentage content of some main constituents. The reason for the differences may be caused by the intraspecific chemical variability of T. vulgaris L. Four types of tested EOs can be classified as a ‘thymol’ chemotype, with thymol as the predominant compound. The thymol alone and the freshly hydrodistilled EO demonstrated the highest cytotoxic effect against used cell lines. The difference in IC50 values suggests more sensitive L929 cells are more sensitive in both the CCK-8 assay (except EOs Kawon) and the NRU assay.
Go to article

Authors and Affiliations

Aurelia Fijałkowska
1
Aneta Wesołowska
2
ORCID: ORCID
Rafał Rakoczy
2
ORCID: ORCID
Magdalena Jedrzejczak-Silicka
1
ORCID: ORCID

  1. West Pomeranian University of Technology, Szczecin, Laboratory of Cytogenetics, Klemensa Janickiego 29, 71-270 Szczecin, Poland
  2. West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Process, Piastow 42, 71-065 Szczecin, Poland

This page uses 'cookies'. Learn more