Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a method of synthesizing copper powders by electrochemical method with the use of a rotating working electrode. The influence of the rotation speed of the working electrode, the current density, the concentration of copper ions, and the addition of ethylene glycol on the shape, size, and size distribution of the obtained powders were investigated. Properties of the synthesized powders were characterized by scanning electron microscopy (SEM) and X-ray powder diffractometry (XRD). It has been shown that it is possible to obtain copper powders with a size of 1 µm by an electrochemical method using the rotary cathode, in sulphate bath with addition of ethylene glycol as a surfactant. Increasing current density causes a decrease in the average size of the obtained powder particles. The addition of 2.5% of ethylene glycol prevents the formation of dendritic powders. The change in the concentration of copper ions in the range from 0.01 to 0.15 mol/dm3 in the electrolyte did not show any significant effect on the size of obtained particles. However, higher concentrations of copper limiting the presence of dendritic-shape particles. Changing the speed of rotation of the electrode affects both the size and the shape of synthesized copper powder. For the rotational speed of the electrode of 115 rpm, the obtained powders have a size distribution in the range of 0-3 µm and an average particle size of 1 µm. The particles had a polygonal shape with an agglomeration tendency.
Go to article

Authors and Affiliations

K. Wojtaszek
1
F. Cebula
1
B. Partyka
1
P. Deszcz
1
G. Włoch
1
R.P. Socha
2
K. Woźny
2
P. Żabiński
1
ORCID: ORCID
M. Wojnicki
1 2

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. CBRTP SA Research and Development Center of Technology for Industry, Ludwika Waryńskiego 3A, 00-645 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The parameters of the injection moulding process have a significant influence on the properties of the moulded parts. Selection of appropriate injection conditions (e. g. the injection temperature, mould temperature, injection and holding pressure, injection speed) contributes to the productivity and energy consumption of the injection moulding process as well as to the quality of the moulded parts. The aim of this study was to evaluate the influence of injection moulding parameters on properties of poly(ethylene) mouldings. Regranulate obtained from recycled film, which is a mixture of low-density poly(ethylene) and linear low-density poly(ethylene), was used for testing. Samples in the form of standardised tensile bars of type A1 were produced by injection moulding. A Krauss-Maffei KM65-160C4 injection moulding machine was used for this purpose. Variable parameters of the this process used in the study were: injection speed, mould temperature and holding pressure. The results of tensile strength tests of the obtained samples are presented. The weight and dimensions of mouldings from four different regranulates were also investigated. The effect of injection moulding conditions on the properties of poly(ethylene) mouldings was shown in the investigations. The mass of poly(ethylene) mouldings is dependent on the holding pressure.
Go to article

Authors and Affiliations

A. Kalwik
1
ORCID: ORCID
R. Humienny
1
ORCID: ORCID
K. Mordal
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42- 201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

It has long been observed that toxic heavy metals at different concentrations can induce root hair development in plants. In oilseed rape we studied ethylene levels and root hair initiation under Cd2+ stress. Growth of the primary root was inhibited but close to root tips the development of subapical root hairs was significantly stimulated by Cd2+ at 30 μM. Versus the control, the distance between the root tip and the root hair zone and the length of the epidermal cell in the elongation zone were significantly reduced by Cd2+ at the same concentration. Exogenous application of Cd2+ and 1-aminocyclopropane-1-carboxylate (ACC) to roots had similar effects on subapical root hair development. Hair density increase and hair elongation in the presence of Cd2+ were reduced by the ethylene inhibitors CoCl2 at 15 μM and aminooxyacetic acid (AOA) at 10 μM. Exposing roots to Cd2+ caused a rapid increase in superoxide radical (O2 ·-) production in the root hair differentiation zone, and at the tips of emerging and newly formed root hairs. Cd2+-induced O2 ·- production at the growing hair tips was blocked in the presence of AOA. Our findings suggest that Cd2+-induced ethylene signaling may act upstream of O2 ·-. Cd2+ promotion of O2 ·- production may operate through an ethylene signaling pathway, and O2 ·- itself may stimulate root hair elongation.

Go to article

Authors and Affiliations

Xin Sun
Lizhong Guo
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a thermodynamic analysis of the removal of an inert gas from the tank using the vapor of liquefied petroleum gas cargo (called cargo tank gassing-up operation). For this purpose a thermodynamic model was created which considers two extreme cases of this process. The first is ‘piston pushing’ of inert gas using liquefied petroleum gas vapour. The second case is the complete mixing of both gases and removal the mixture from the tank to the atmosphere until desired concentration or amount of liquefied petroleum gas cargo in the tank is reached. On the example of nitrogen as inert gas and ethylene as a cargo, by thermodynamic analysis an attempt was made to determine the technical parameters of the process, i.e., pressure in the tank, temperature, time at which the operation would be carried out in an optimal way, minimizing the loss of cargo used for gassingup. Calculations made it possible to determine the amount of ethylene used to complete the operation and its loss incurred as a result of total mixing of both gases.
Go to article

Authors and Affiliations

Agnieszka Wieczorek
1

  1. Gdynia Maritime University, Morska 81–87, 81-225 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The application of aqueous two-phase systems (ATPS) is a cost-effective and simple method of protein separation (including enzymes) from complex systems. The first stage of designing the protein purification process in an ATPS involves the identification of the conditions for the formation of a given extraction system. For this purpose, the conditions for the formation of ATPSs in a thermoseparating EO50PO50 polymer/potassium phosphates system have been studied. Factors determining the ATPS formation comprised: separation temperature (4ºC or 20ºC), phosphate solution pH (6, 7.5 or 9) as well as the concentration of NaCl introduced into the systems (0.085 M, 0.475 M and 0.85 M). ATPS without NaCl were prepared as well. The conditions for the formation of the primary EO50PO50/potassium phosphate ATPS were determined with their phase diagrams. It was observed that with an increase of phosphate pH and NaCl concentration in the system, there was a decrease of the EO50PO50 and phosphate concentrations necessary to form a primary ATPS. After the primary two-phase separation, the top phase (rich in the EO50PO50 polymer) was partitioned from the bottom phase (rich in phosphates). Next, by means of polymer phase thermoseparation, a secondary two-phase system was formed. In the secondary EO50PO50/phosphate ATPS, the bottom phase was formed by the concentrated EO50PO50 polymer (30-80% concentration), while the top phase by a solution composed mainly of water, containing phosphate ions and remains of EO50PO50 polymer (3-7%).

Go to article

Authors and Affiliations

Radosław Dembczyński
Wojciech Białas
Tomasz Jankowski
Download PDF Download RIS Download Bibtex

Abstract

Application of 1-naphthaleneacetic acid (NAA) or 1-aminocyclopropane-1-carboxilic acid (ACC) to maize roots growing in hydroponic solution inhibited root elongation, and increased radial growth, but the responses to those treatments differed in degree. Auxin was more effective than ACC as an elongation inhibitor and root swelling promoter. Whereas NAA fully inhibited elongation and maintained swelling over 48 h, ACC inhibited elongation partially (50%) and only promoted swelling for 24 h. It is well-known that auxin, like ACC, promotes ethylene production, but similar levels of ethylene production reached by means of NAA or ACC treatments did not elicit the same response, the response being always stronger to NAA than to ACC. These results suggest that the effect of auxin on root growth is not mediated by ethylene. Elongation and swelling of roots appear to be inversely related: usually a reduction in elongation was accompanied by corresponding swelling. However, these two processes showed different sensitivities to growth regulators. After 24 h treatment with 0.5 μM NAA or 5 μM ACC, root elongation was inhibited by 90% and 53% respectively, but the same treatments promoted swelling by 187% and 140% respectively. Furthermore, 1 μM ACC was shown to promote inhibition of root elongation without affecting swelling. The ethylene antagonist STS (silver thiosulfate) did not affect elongation in control or NAAtreated roots, but increased ethylene production and swelling. These results indicate that longitudinal and radial expansion could be independently controlled.

Go to article

Authors and Affiliations

María Victoria Alarcón
Pedro G. Lloret
Domingo José Iglesias
Manuel Talón
Julio Salguero
Download PDF Download RIS Download Bibtex

Abstract

During the research interaction of indole-3-acetic acid (IAA) and methyl jasmonate (JA-Me) in epinasty and/or hyponasty, as well as petiole growth of Bryophyllum calycinum were investigated. Exogenously applied IAA as a lanolin paste was extremely effective to induce epinasty and/or hyponasty accompanied with petiole elongation in intact B. calycinum. Application of IAA around or to the upper side of the petiole was much more effective than that to the lower side, suggesting that petiole epidermal cells on the adaxial side of B. calycinum are more sensitive and/or susceptive to IAA than those on the abaxial one. This is supported by the fact that not only the second curvature but also the first one in B. calycinum was enhanced by application of IAA to the upper side of the petiole. The degree of epinasty and/or hyponasty induced by IAA is strongly related to the increase of petiole growth. On the other hand, JA-Me significantly inhibited IAA-inducing epinasty and/or hyponasty, and petiole growth in intact B. calycinum. When detached leaves with petioles were placed leaf blade face down, clear petiole bending was observed. However, no petiole bending was found when detached leaves were placed leaf blade face up. Exogenously applied IAA to petioles was significantly effective to induce and/or stimulate petiole bending in placing detached leaves of B. calycinum face down but ethephon was not, suggesting that transport and/or movement of endogenous auxin produced in the leaf blade are necessary to induce petiole bending in detached leaves of B. calycinum and that ethylene derived from exogenously applied IAA does not play an important role in epinasty and/or hyponasty, and petiole bending in B. calycinum. The mechanisms of IAA-enhancing and JA-Me-inhibiting epinasty and/or hyponasty, and petiole growth are intensively discussed.
Go to article

Authors and Affiliations

Junichi Ueda
Justyna Góraj-Koniarska
Kensuke Miyamoto
Marian Saniewski
Download PDF Download RIS Download Bibtex

Abstract

Petiole bending in detached leaves of Bryophyllum calycinum was intensively investigated in relation to polar auxin transport in petioles. When detached leaves were placed leaf blade face down, clear petiole bending was observed. On the other hand, no petiole bending was found when detached leaves were placed leaf blade face up. Indole-3-acetic acid (IAA) exogenously applied to petioles was significantly effective to induce and/or stimulate petiole bending when detached leaves were placed leaf blade face down. To clarify the mechanisms of petiole bending in detached leaves of B. calycinum when they were placed leaf blade face down, the effects of application of IAA, ethephon which is an ethylene releasing compound, inhibitors of polar auxin transport such as 2,3,5-tiiodobenzoic acid (TIBA), N-1-naphthylphthalamic acid (NPA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA) and methyl jasmonate (JA-Me) were thoroughly investigated. Ethephon was not effective to enhance petiole bending, suggesting that ethylene derived from exogenously applied IAA does not play an important role in petiole bending in detachd leaves of B. calycinum. This suggestion was strongly supported by the fact that ethephon exogenously applied to petioles in intact plant of B. calycinum had no effect on inducing epinasty and/or hyponasty either (Ueda et al., 2018). Potent inhibitors of polar auxin transport, TIBA and HFCA, and JA-Me were extremely effective to inhibit petiole bending but NPA was not. Almost no petiole bending was observed in excised petiole segments without the leaf blade. Applicaton of IAA to the cut surface of petioles in the leaf blade side strongly promoted petiole bending. Polar auxin transport in excised petioles of B. calycinum was intensively investigated using radiolabeled IAA ([1-14C] IAA). Clear polar auxin transport was observed in excised petiole segments, indicating that auxin allows movement in one direction: from the leaf blade side to the stem side in petioles. When detached leaves were placed only leaf blade face down, transported 14C-IAA was reduced in the lower side of the excised petioles. These results strongly suggest that transport and/or lateral movement of endogenous auxin biosynthesized or produced in the leaf blade are necessary to induce petiole bending in detached leaves of B. calycinum. Mechanisms of petiole bending in detached leaves of B. calycinum are also discussed in relation to polar auxin transport and lateral movement of auxin.

Go to article

Authors and Affiliations

Junichi Ueda
Kensuke Miyamoto
Justyna Góraj-Koniarska
Marian Saniewski

This page uses 'cookies'. Learn more