Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article reports the effects of CuO/water based coolant on specific fuel consumption and exhaust emissions of four stroke single cylinder diesel engine. The CuO nanoparticles of 27 nm were used to prepare the nanofluid-based engine coolant. Three different volume concentrations (i.e 0.05%, 0.1%, and 0.2%) of CuO/water nanofluids were prepared by using two-step method. The purpose of this study is to investigate the exhaust emissions (NOx), exhaust gas temperature and specific fuel consumption under different load conditions with CuO/water nanofluid. After a series of experiments, it was observed that the CuO/water nanofluids, even at low volume concentrations, have a significant influence on exhaust emissions. The experimental results revealed that, at full load condition, the specific fuel consumption was reduced by 8.6%, 15.1% and 21.1% for the addition of 0.05%, 0.1% and 0.2% CuO nanoparticles with water, respectively. Also, the emission tests were concluded that 881 ppm, 853 ppm and 833 ppm of NOx emissions were observed at high load with 0.05%, 0.1% and 0.2% volume concentrations of CuO/water nanofluids, respectively.

Go to article

Bibliography

[1] S.U.S. Choi and J.A. Eastman. Enhancing thermal conductivity of fluids with nanoparticles. In 1995 International mechanical engineering congress and exhibition. ASME, 12-17 Nov. 1995.
[2] M.A. Akhavan-Behabadi, F. Hekmatipour, S.M. Mirhabibi, and B. Sajadi. Experimental investigation of thermal–rheological properties and heat transfer behavior of the heat transfer oil–copper oxide (HTO–CuO) nanofluid in smooth tubes. Experimental Thermal and Fluid Science, 68:681–688, 2015.
[3] M.T.Naik, S.S. Fahad, L.S. Sundar, and M.K. Singh. Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid. Experimental Thermal and Fluid Science, 57:65–76, 2014.
[4] M.T. Naik, G.R. Janardana, and L.S. Sundar. Experimental investigation of heat transfer and friction factor with water–propylene glycol based CuO nanofluid in a tube with twisted tape inserts. International Communications in Heat and Mass Transfer, 46:13–21, 2013.
[5] J.J. Michael and S. Iniyan. Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide–water nanofluid. Solar Energy, 119:439–451, 2015.
[6] M. Bouhalleb and H. Abbassi. Natural convection in an inclined rectangular enclosure filled by CuO-H2O nanofluid, with sinusoidal temperature distribution. International Journal of Hydrogen Energy, 40(39):13676–13684, 2015.
[7] K. Goudarzi, E. Shojaeizadeh, and F. Nejati. An experimental investigation on the simultaneous effect of CuO-H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector. Applied Thermal Engineering, 73(1):1236–1243, 2014.
[8] Y. Abbassi, A.S. Shirani, and S. Asgarian. Two-phase mixture simulation of Al2O3/water nanofluid heat transfer in a non-uniform heat addition test section. Progress in Nuclear Energy, 83:356–364, 2015.
[9] H.K. Gupta, G.D. Agrawal, and J. Mathur. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector. Solar Energy, 118:390–396, 2015.
[10] E. Shojaeizadeh, F. Veysi, and A. Kamandi. Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based flat-plate solar collector. Energy and Buildings, 101:12–23, 2015.
[11] M.H. Esfe, A. Karimipour, W.-M. Yan, M. Akbari, M.R. Safaei, and M. Dahari. Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 88:728–734, 2015.
[12] M.H. Esfe, S. Saedodin, M. Akbari, A. Karimipour, M. Afrand, S. Wongwises, M.R. Safaei, and M. Dahari. Experimental investigation and development of new correlations for thermal conductivity of cuo/eg–water nanofluid. International Communications in Heat and Mass Transfer, 65:47–51, 2015.
[13] L. S. Sundar, Md.H. Farooky, S.N. Sarada, and M.K. Singh. Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. International Communications in Heat and Mass Transfer, 41:41–46, 2013.
[14] R.S. Khedkar, S.S. Sonawane, and K.L.Wasewar. Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. International Communications in Heat and Mass Transfer, 39(5):665–669, 2012.
[15] M.N. Rashin and J. Hemalatha. A novel ultrasonic approach to determine thermal conductivity in CuO-ethylene glycol nanofluids. Journal of Molecular Liquids, 197:257–262, 2014.
[16] R. Karthik, R.H. Nagarajan, B. Raja, and P. Damodharan. Thermal conductivity of CuO-DI water nanofluids using 3-ω measurement technique in a suspended micro-wire. Experimental Thermal and Fluid Science, 40:1–9, 2012.
[17] S. Harikrishnan and S. Kalaiselvam. Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material. Thermochimica Acta, 533:46–55, 2012.
[18] M. Saeedinia, M.A. Akhavan-Behabadi, and P. Razi. Thermal and rheological characteristics of CuO-base oil nanofluid flow inside a circular tube. I nternational Communications in Heat and Mass Transfer, 39(1):152–159, 2012.
[19] M.-S. Liu, M.C.-C. Lin, I.-T. Huang, and C.-C. Wang. Enhancement of thermal conductivity with CuO for nanofluids. Chemical Engineering & Technology, 29(1):72–77, 2006.
[20] M.-S. Liu, M.C.-C. Lin, and C.-C. Wang. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Research Letters, 6(1):1–13, 2011.
[21] H.E. Patel, T. Sundararajan, and S.K. Das. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. Journal of Nanoparticle Research, 12(3):1015–1031, 2010.
[22] D.P. Kulkarni, R.S. Vajjha, D.K. Das, and D. Oliva. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Applied Thermal Engineering, 28(14-15):1774–1781, 2008.
[23] M. Raja, R. Vijayan, S. Suresh, and R. Vivekananthan. Effect of heat transfer enhancement and NOx emission using Al2O3/water nanofluid as coolant in CI engine. Indian Journal of Engineering & Materials Sciences, 20:443–449, 2013.
[24] S.M. Peyghambarzadeh, S.H. Hashemabadi, S.M. Hoseini, and M.S. Jamnani. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a newcoolant for car radiators. International Communications in Heat and Mass Transfer, 38(9):1283–1290, 2011.
[25] S. Suresh, M. Chandrasekar, and S.C. Sekhar. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Experimental Thermal and Fluid Science, 35(3):542–549, 2011.
[26] M. Naraki, S.M. Peyghambarzadeh, S.H. Hashemabadi, and Y. Vermahmoudi. Parametric study of overall heat transfer coefficient of Cuo/water nanofluids in a car radiator. International Journal of Thermal Sciences, 66:82–90, 2013.
[27] B. Xiao, Y. Yang, and L. Chen. Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry. Powder Technology, 239:409–414, 2013.
[28] C. Sayin and M. Canakci. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine. Energy Conversion and Management, 50(1):203–213, 2009.
Go to article

Authors and Affiliations

S. Senthilraja
1
KCK Vijayakumar
2
R. Gangadevi
3

  1. Faculty of Mechanical Engineering, Anna University, Chennai, India
  2. Department of Mechanical Engineering, Vivekanandha Institute of Engineering & Technology for Women, Tiruchengode, India
  3. Department of Mechatronics Engineering, SRM University, Chennai, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a numerical model of car exhaust pollutant dispersion. The model can be used for estimation of the impact of pollutant emissions from road vehicles on the environment. The finite volume method has been used for model formulation. Equations obtained after discretisation are solved by using different methods like Runge-Kutta, Crank-Nicholson or decomposition methods. On the basis of the numerical simulation, conclusions are formulated about the numerical effectiveness of the integration methods used. In the paper, a problem of nitrogen oxides dispersion is formulated and solved, whereby chemical reactions are included in considerations. The model presented in the paper has been used for numerical calculations of car exhaust pollutant concentrations in a real car park. The last part of the paper presents some numerical results of calculations, which include emissions after cold start of engines.
Go to article

Authors and Affiliations

Krzysztof Brzozowski
Download PDF Download RIS Download Bibtex

Abstract

SI engines are highly susceptible to excess emissions when started at low ambient temperatures. This phenomenon has multiple air quality and climate forcing implications. Direct injection petrol engines feature a markedly different fuelling strategy, and so their emissions behaviour is somewhat different from indirect injection petrol engines. The excess emissions of direct injection engines at low ambient temperatures should also differ. Additionally, the direct injection fuel delivery process leads to the formation of PM, and DISI engines should show greater PM emissions at low ambient temperatures. This study reports on laboratory experiments quantifying excess emissions of gaseous and solid pollutants over a legislative driving cycle following cold start at a low ambient temperature for both engine types. Over the legislative cycle for testing at -7°C (the UDC), emissions of HC, CO, NOx and CO2 were higher when tested at -7°C than at 24°C. Massive increases in emissions of HC and CO were observed, together with more modest increases in NOx and CO2 emissions. Results from the entire driving cycle showed excess emissions in both phases (though they were much larger for the UDC). The DISI vehicle showed lower increases in fuel consumption than the port injected vehicles, but greater increases in emission of HC and CO. DISI particle number emissions increased by around 50%; DISI particle mass by over 600%. The observed emissions deteriorations varied somewhat by engine type and from vehicle to vehicle. Excesses were greatest following start-up, but persisted, even after several hundred seconds’ driving. The temperature of the intake air appeared to have a limited but significant effect on emissions after the engine has been running for some time. All vehicles tested here comfortably met the relevant EU limits, providing further evidence that these limits are no longer challenging and need updating.

Go to article

Authors and Affiliations

Piotr Bielaczyc
Andrzej Szczotka
Joseph Woodburn

This page uses 'cookies'. Learn more