Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Materials and their development process are highly dependent on proper experimental testing under wide range of loading within which high-strain rate conditions play a very significant role. For such dynamic loading Split Hopkinson Pressure Bar (SHPB) is widely used for investigating the dynamic behavior of various materials. The presented paper is focused on the SHPB impulse measurement process using experimental and numerical methods. One of the main problems occurring during tests are oscillations recorded by the strain gauges which adversely affect results. Thus, it is desired to obtain the peak shape in the incident bar of SHPB as “smooth” as possible without any distortions. Such impulse characteristics can be achieved using several shaping techniques, e.g. by placing a special shaper between two bars, which in fact was performed by the authors experimentally and subsequently was validated using computational methods.

Go to article

Authors and Affiliations

Paweł Baranowski
Roman Gieleta
Jerzy Malachowski
Krzysztof Damaziak
Lukasz Mazurkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study described herein was to design, construct and test a demonstrator of a system to control the direction of the resultant thrust vector of a rocket motor to be used in short range anti-tank missiles with a mass of up to 15 kg. The novelty of the system is that the direction of the resultant thrust vector is manipulated by means of moveable jet vanes integrated with a moveable nozzle diffuser through telescopic connectors. The technology demonstrator was built using different materials and different manufacturing processes. The first versions were 3D printed from plastic materials. Minor modifications to the design were made at an early stage. The final version had the main components made of aluminum using CNC machining. The system, with and without jet vanes, was tested on a specially developed test rig equipped with a multi-axis sensor to measure forces and torques. The nozzle performance parameters measured and analyzed in this study were the components of the thrust vector, the moments and the effective vectoring angle. The findings show that the experimental data are in good agreement with the results of earlier simulations and that the demonstrator is fully operational.
Go to article

Authors and Affiliations

Łukasz Krzysztof Nocoń
1
ORCID: ORCID
Marta Grzyb
1
Piotr Szmidt
1
Łukasz Marian Nowakowski
2

  1. Kielce University of Technology, Department of Mechatronics and Armament Engineering, Faculty of Mechatronics and Mechanical Engineering,al. Tysia˛clecia Pan´stwa Polskiego 7, 25-314 Kielce, Poland
  2. Kielce University of Technology, Department of Mechanical Engineering and Metrology, Faculty of Mechatronics and Mechanical Engineering,al. Tysia˛clecia Pan´stwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper was to assess the bending strength of steel plate - concrete composite members, based on an experimental study performed by the authors together with theoretical and numerical analyses. The values of the mechanical parameters of the materials the beams were made from were adopted on the basis of the tests results. The proposed solutions have been verified by experiment. For this purpose the results of tests performed by the authors and other researchers have been used. The former ones are original, and the way of their presentation makes them applicable by other researchers. Following the results it can be stated that with respect to bending strengths from the experimental study the results obtained from the theoretical analysis are underestimated 6,6 % on average. The results based on the numerical analysis, on the other hand, are overestimated by - 7,5 % on average. The results of the theoretical and numerical analyses indicate that the interface slip between the steel plate and concrete part affect the bending strength of steel plate-concrete composite beams only slightly (about 2% on average).

Go to article

Authors and Affiliations

Dawid Kisała
Kazimierz Furtak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research on the development of a line-start synchronous reluctance motor (LSSynRM) and line-start permanent magnet synchronous motor (LSPMSM) based on components of a mass-produced three-phase low-power squirrel cage induction motor (IM). The aim of the research was to modify the squirrel cage rotor structure for which the best functional parameters characterizing the steady state of the LSSynRM and LSPMSM were obtained, while meeting the additional requirements for asynchronous start-up. Field-circuit models of the LSSynRM and LSPMSM have been developed in the professional finite element method (FEM) package, MagNet, and applied in the design and optimization calculations of the considered machines. Experimental testing on the designed LSSynRM and LSPMSM prototypes were carried out. The obtained results were compared with the performance of the reference IM. The conclusions resulting from the comparative analysis of these three motors are given and proposals for further work are discussed.

Go to article

Authors and Affiliations

Wieslaw Lyskawinski
Download PDF Download RIS Download Bibtex

Abstract

Experimental tests of steel unstiffened double side bolted end-plate joints have been presented. The main aim of the conducted tests was to check the behavior of joints in an accidental situation and possibility of creating secondary mechanism, i.e. catenary action in the scenario of column loss. Two types of end plate joints were tested: flush end-plate (FP) and extended end-plate (EP) with different thickness and different number of bolt rows in each. The tests were carried out on an isolated cross beam-column-beam type system until joint failure. During tests the available moment resistance and rotation capacity of bending joints and also values of tension forces in the beam were determined. The joints with extended end-plate have demonstrated higher bending and rotational capacity than flush end-plate. Significant deformation of column flanges, web and end plate were observed. The fracture of bolts was the failure mode of joints. Obtained results of axial force values in beam exceeded standard requirement what confirmed that the joints with unstiffened web column, flush or extended end-plate possess the ability of development the catenary action.

Go to article

Authors and Affiliations

Aleksander Kozłowski
Damian Kukla
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Metal columns of hollow and smoothly variable cross-sections, simply supported at their ends are considered in the paper. Columns of such shapes are recently frequently designed by architects in public utility buildings of various types. In thiswork authors present the comparatively simple method of buckling resistance assessment which can be used by designers of metal columns of such shapes. The formula on critical force required in the procedure was derived for columns of variable cross section by means of Mathematica™system. The closed formulae were obtained for a rod with a certain, predefined geometry being the surface of revolution. Critical forces obtained by means of derived formulae were compared with results of numerical solutions. To assess the compression resistance of considered rods the general Ayrton–Perry approach was applied and bow imperfection with assumed amplitude was used in the analysis. Results of numerical simulations and experimental tests inserted in the paper confirm the correctness and the effectiveness of the proposed procedure of buckling resistance assessment of considered struts.
Go to article

Authors and Affiliations

Paweł Błażejewski
1
ORCID: ORCID
Tomasz Klekiel
2
ORCID: ORCID
Sebastian Kołodziej
1
ORCID: ORCID
Jakub Marcinowski
1
ORCID: ORCID
Volodymyr Sakharov
1
ORCID: ORCID

  1. University of Zielona Góra, Poland, Institute of Civil Engineering, Szafrana 1, 65-516 Zielona Gora, Poland
  2. University of Zielona Góra, Poland, Institute of Biomedical Engineering, Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland

This page uses 'cookies'. Learn more