Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study was carried out on the background of Sutong Bridge project based on fracture mechanics, aiming at analyzing the growth mechanism of fatigue cracks of a bridge under the load of vehicles. Stress intensity factor (SIF) can be calculated by various methods. Three steel plates with different kinds of cracks were taken as the samples in this study. With the combination of finite element analysis software ABAQUS and the J integral method, SIF values of the samples were calculated. After that, the extended finite element method in the simulation of fatigue crack growth was introduced, and the simulation of crack growth paths under different external loads was analyzed. At last, we took a partial model from the Sutong Bridge and supposed its two dangerous parts already had fine cracks; then simulative vehicle load was added onto the U-rib to predict crack growth paths using the extended finite element method.

Go to article

Authors and Affiliations

H. Zhu
Download PDF Download RIS Download Bibtex

Abstract

Nominal strength reduction in cross ply laminates of [0/90]2s is observed in tensile tests of glass fiber composite laminates having central open hole of diameters varying from 2 to 10 mm. This is well known as the size effect. The extended finite element method (XFEM) is implemented to simulate the fracture process and size effect (scale effect) in the glass fiber reinforced polymer laminates weakened by holes or notches. The analysis shows that XFEM results are in good agreement with the experimental results specifying nominal strength and in good agreement with the analytical results based on the cohesive zone model specifying crack opening displacement and the fracture process zone length.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Mohammed Y. Abdellah
Mohammad S. Alsoufi
Mohamed K. Hassan
Hamza A. Ghulman
Ahmed F. Mohamed

Download PDF Download RIS Download Bibtex

Abstract

This paper presents an extended finite element method applied to solve phase change problems taking into account natural convection in the liquid phase. It is assumed that the transition from one state to another, e.g., during the solidification of pure metals, is discontinuous and that the physical properties of the phases vary across the interface. According to the classical Stefan condition, the location, topology and rate of the interface changes are determined by the jump in the heat flux. The incompressible Navier-Stokes equations with the Boussinesq approximation of the natural convection flow are solved for the liquid phase. The no-slip condition for velocity and the melting/freezing condition for temperature are imposed on the interface using penalty method. The fractional four-step method is employed for analysing conjugate heat transfer and unsteady viscous flow. The phase interface is tracked by the level set method defined on the same finite element mesh. A new combination of extended basis functions is proposed to approximate the discontinuity in the derivative of the temperature, velocity and the pressure fields. The single-mesh approach is demonstrated using three two-dimensional benchmark problems. The results are compared with the numerical and experimental data obtained by other authors.

Go to article

Bibliography

[1] A. Faghri and Y. Zhang. Transport Phenomena in Multiphase Systems. Elsevier, 2006.
[2] S.C. Gupta. The Classical Stefan Problem: Basic Concepts, Modelling and Analysis. Elsevier, 2003.
[3] V. Alexiades and S.D. Solomon. Mathematical Modeling of Melting and Freezing Processes. Hemisphere Publ. Co, Washington DC, 1993.
[4] O.C. Zienkiewicz, R.L. Taylor, and P. Nithiarasu. The Finite Element Method for Fluid Dynamics, 6th edition. Elsevier Butterworth-Heinemann, Burlington, 2005.
[5] K. Morgan. A numerical analysis of freezing and melting with convection. Computer Methods in Applied Mechanics and Engineering, 28(3):275–284, 1981. doi: 10.1016/0045-7825(81)90002-5.
[6] J. Mackerle. Finite elements and boundary elements applied in phase change, solidification and melting problems. A bibliography (1996–1998). Finite Elements in Analysis and Design, 32(3):203–211, 1999. doi: 10.1016/S0168-874X(99)00007-4.
[7] S. Wang, A. Faghri, and T.L. Bergman. A comprehensive numerical model for melting with natural convection. International Journal of Heat and Mass Transfer, 53(9-10):1986–2000, 2010. doi: 10.1016/j.ijheatmasstransfer.2009.12.057.
[8] G. Vidalain, L. Gosselin, and M. Lacroix. An enhanced thermal conduction model for the prediction of convection dominated solid–liquid phase change. International Journal of Heat and Mass Transfer, 52(7-8):1753–1760, 2009. doi: 10.1016/j.ijheatmasstransfer.2008.09.020.
[9] I. Danaila, R. Moglan, F. Hecht, and S. Le Masson. A Newton method with adaptive finite elements for solving phase-change problems with natural convection. Journal of Computational Physics, 274:826–840, 2014. doi: 10.1016/j.jcp.2014.06.036.
[10] J.M. Melenk and I. Babuska. The partition of unity finite element method: basic theory and application. Computer Methods in Applied Mechanics and Engineering. 139(1-4):289–314, 1996. doi: 10.1016/S0045-7825(96)01087-0.
[11] A. Cosimo, V. Fachinotti, and A. Cardona. An enrichment scheme for solidification problems. Computational Mechanics, 52(1):17–35, 2013. doi: 10.1007/s00466-012-0792-9.
[12] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5):601–620, 1999. doi: 10.1002/(SICI)1097-0207(19990620)45:5601::AID-NME598>3.0.CO;2-S.
[13] R. Merle and J. Dolbow. Solving thermal and phase change problems with the eXtended finite element method. Computational Mechanics, 28(5):339–350, 2002. doi: 10.1007/s00466-002-0298-y.
[14] J. Chessa, P. Smolinski, and T. Belytschko. The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering, 53(8):1959–1977, 2002. doi: 10.1002/nme.386.
[15] P. Stapór. The XFEM for nonlinear thermal and phase change problems. International Journal of Numerical Methods for Heat & Fluid Flow, 25(2):400–421, 2015. doi: 10.1108/HFF-02-2014-0052.
[16] N. Zabaras, B. Ganapathysubramanian, and L. Tan. Modelling dendritic solidification with melt convection using the extended finite element method. Journal of Computational Physics, 218(1):200–227, 2006. doi: 10.1016/j.jcp.2006.02.002.
[17] P. Stapór. A two-dimensional simulation of solidification processes in materials with thermodependent properties using XFEM. International Journal of Numerical Methods for Heat & Fluid Flow, 26(6):1661–1683, 2016. doi: 10.1108/HFF-01-2015-0018.
[18] J. Chessa and T. Belytschko. An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension. International Journal for Numerical Methods in Engineering, 58(13):2041–2064, 2003. doi: 10.1002/nme.946.
[19] J. Chessa and T. Belytschko. An extended finite element method for two-phase fluids. Journal of Applied Mechanics, 70(11):10–17, 2003. doi: 10.1115/1.1526599.
[20] M. Li, H. Chaouki, J. Robert, D. Ziegler, D. Martin, and M. Fafard. Numerical simulation of Stefan problem with ensuing melt flow through XFEM/level set method. Finite Elements in Analysis and Design, 148:13–26, 2018. doi: 10.1016/j.finel.2018.05.008.
[21] D. Martin, H. Chaouki, J. Robert, D. Ziegler, and M. Fafard. A XFEM phase change model with convection. Frontiers in Heat and Mass Transfer, 10:1-11, 2018. doi: 10.5098/hmt.10.18.
[22] S. Osher and J.A. Sethian. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79(1):12–49, 1988. doi: 10.1016/0021-9991(88)90002-2.
[23] M. Stolarska, D.L. Chopp, N. Möes, and T. Belytschko. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 51(8):943–960, 2001. doi: 10.1002/nme.201.
[24] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114(1):146–159, 1994. doi: 10.1006/jcph.1994.1155.
[25] M.Y. Wang, X. Wang, and D. Guo. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192(1-2):227–246, 2003. doi: 10.1016/S0045-7825(02)00559-5.
[26] N. Peters. Turbulent Combustion. Cambridge University Press, Cambridge, 2000.
[27] Y.H. Tsai and S. Osher. Total variation and level set methods in image science. Acta Numerica, 14:509–573, 2005. doi: 10.1017/S0962492904000273.
[28] V. Alexiades and J.B. Drake. A weak formulation for phase-change problems with bulk movement due to unequal densities. In J.M. Chadam and H. Rasmussen editors, Free Boundary Problems Involving Solids, pages 82–87, CRC Press, 1993.
[29] S. Chen, B. Merriman, S. Osher, and P. Smereka. A simple level set method for solving Stefan problems. Journal of Computational Physics, 135(1):8–29, 1997. doi: 10.1006/jcph.1997.5721.
[30] H. Sauerland. An XFEM Based Sharp Interface Approach for Two-Phase and free-Surface Flows. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2013.
[31] J.E. Tarancòn, A.Vercher, E. Giner, and F.J. Fuenmayor. Enhanced blending elements forXFEM applied to linear elastic fracture mechanics. I nternational Journal for Numerical Methods in Engineering, 77(1):126–148, 2009. doi: 10.1002/nme.2402.
[32] T.P. Fries. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 75(5):503–532, 2008. doi: 10.1002/nme.2259.
[33] N. Moës, M. Cloirec, P. Cartraud, and J.F. Remacle. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 192(28-30):3163–3177, 2003. doi: 10.1016/S0045-7825(03)00346-3.
[34] G. Zi and T. Belytschko. New crack-tip elements for XFEM and applications to cohesive cracks. International Journal for Numerical Methods in Engineering, 57(15):2221–2240, 2003. doi: 10.1002/nme.849.
[35] G. Ventura, E. Budyn, and T. Belytschko. Vector level sets for description of propagating cracks in finite elements. International Journal for Numerical Methods in Engineering, 58(10):1571–1592, 2003. doi: 10.1002/nme.829.
[36] P. Stąpór. An improved XFEM for the Poisson equation with discontinuous coefficients. Archive of Mechanical Engineering, 64(1):123–144, 2017. doi: 10.1515/meceng-2017-0008.
[37] H.G. Choi, H. Choi, and J.Y. Yoo. A fractional four-step finite element formulation of the unsteady incompressible Navier-Stokes equations using SUPG and linear equal-order element methods. Computer Methods in Applied Mechanics and Engineering, 143(3-4):333–348, 1997. doi: 10.1016/S0045-7825(96)01156-5.
[38] R. Codina. Pressure stability in fractional step finite element methods for incompressible flows. Journal of Computational Physics, 170(1):112–140, 2001. doi: 10.1006/jcph.2001.6725.
[39] Z. Chen. Finite Element Methods and Their Applications. Springer, 2005.
[40] T. Belytschko,W.K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Structures. Wiley, 2000.
[41] T.A. Kowalewski and M. Rebow. Freezing of water in differentially heated cubic cavity. International Journal of Computational Fluid Dynamics, 11(3-4):193–210, 1999. doi: 10.1080/10618569908940874.
[42] T. Michałek and T.A. Kowalewski. Simulations of the water freezing process – numerical benchmarks. Task Quarterly, 7(3):389–408, 2003.
[43] M. Giangi, T.A.Kowalewski, F. Stella, and E. Leonardi.Natural convection during ice formation: numerical simulation vs. experimental results. Computer Assisted Mechanics and Engineering Sciences, 7(3):321–342, 2000.
[44] P. Stąpór. An enhanced XFEM for the discontinuous Poisson problem. Archive of Mechanical Engineering, 66(1):25–37, 2019. doi: 10.24425/ame.2019.126369.
[45] Thermal-FluidCentral. Thermophysical Properties: Phase Change Materials, 2010 (last accessed January 14, 2016). https://thermalfluidscentral.org.
[46] M. Okada. Analysis of heat transfer during melting from a vertical wall. I nternational Journal of Heat and Mass Transfer, 27(11):2057–2066, 1984. doi: 10.1016/0017-9310(84)90192-3.
[47] Z. Ma and Y. Zhang. Solid velocity correction schemes for a temperature transforming model for convection phase change. International Journal of Numerical Methods for Heat & Fluid Flow, 16(2):204–225, 2006. doi: 10.1108/09615530610644271.
Go to article

Authors and Affiliations

Paweł Stąpór
1

  1. Faculty of Management and Computer Modelling, Kielce University of Technology, Kielce, Poland.
Download PDF Download RIS Download Bibtex

Abstract

The essential parameters for structure integrity assessment in Linear Elastic Fracture Mechanics (LEFM) are Stress Intensity Factors (SIFs). The estimation of SIFs can be done by analytical or numerical techniques. The analytical estimation of SIFs is limited to simple structures with non-complicated boundaries, loads and supports. An effective numerical technique for analyzing problems with singular fields, such as fracture mechanics problems, is the extended finite element method (XFEM). In the paper, XFEM is applied to compute an actual stress field in a two-dimensional cracked body. The XFEM is based on the idea of enriching the approximation in the vicinity of the discontinuity. As a result, the numerical model consists of three types of elements: non-enriched elements, fully enriched elements (the domain of whom is cut by a discontinuity), and partially enriched elements (the so-called blending elements). In a blending element, some but not all of the nodes are enriched, which adds to the approximation parasitic term. The error caused by the parasitic terms is partly responsible for the degradation of the convergence rate. It also limits the accuracy of the method. Eliminating blending elements from approximation space and replacing them with standard elements, together with applying shifted-basis enrichment, makes it possible to avoid the problem. The numerical examples show improvements in results when compared with the standard XFEM approach.

Go to article

Authors and Affiliations

Paweł Stąpór

This page uses 'cookies'. Learn more