Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The usefulness of elastic compliance measurements to estimate crack closure in structural steel and the validity of the assumption of a constant compliance value for the fully open crack is examined. Based on considering different issues related to the experimental technique and compliance data processing, local compliance measurements and the compliance offset method recommended by the ASTM standard are selected to be most suitable for structural steel. The compliance data generated in fatigue tests on I 8G2A steel conducted under a variety of loading conditions enabled to choose an optimal strain gauge positioning and appropriate offset criterion values for the original compliance offset method and its modified (normalized) version. The adequacy of the closure measurements is assessed through checking the ability of the resulting effective stress intensity factors to account for the observed effects of the loading conditions on fatigue crack growth rates.
Go to article

Authors and Affiliations

Małgorzata Skorupa
Andrzej Skorupa
Tomasz Machniewicz
Download PDF Download RIS Download Bibtex

Abstract

Effects of specimen thickness and stress ratio on fatigue crack growth and crack closure levels under constant amplitude loading and after a single overload have been studied experimentally for a structural steel ( I 8G2A). The corresponding crack growth data from the fatigue tests have been presented and evaluated. The experimental trends have been compared to those reported in the literature for various steels. The ability of the effective stress intensity factor range based on crack closure measurements to correlate the observed crack growth response has been investigated.
Go to article

Authors and Affiliations

Małgorzata Skorupa
Andrzej Skorupa
Jaap Schijve
Tomasz Machniewicz
Paweł Korbut
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of comparative tests of the fatigue properties conducted on two non-ferrous alloys designated as Al 6082 and

Al 7075 which, due to the satisfactory functional characteristics, are widely used as engineering materials. The fatigue tests were carried

out using a proprietary, modified low cycle test (MLCF). Particular attention was paid to the fatigue strength exponent b and fatigue

ductility exponent c. Based on the tests carried out, the results comprised within the range defined by the literature were obtained. These

results prove a satisfactory sensitivity of the method applied, its efficiency, the possibility of conducting tests in a fully economical way

and above all the reliability of the obtained results of the measurements. Thus, the thesis has been justified that the modified low cycle

fatigue test (MLCF) can be recommended as a tool used in the development of alloy characteristics within the range of low-cycle variable

loads

Go to article

Authors and Affiliations

M. Maj
K. Pietrzak
Download PDF Download RIS Download Bibtex

Abstract

The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn) aluminium alloy and estimates possibilities of

its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was

to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the

7xxx series. For analysis, wrought AlZnMgCu alloy (7075) was selected. Its potential of the estimated as-cast mechanical properties

indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue

properties support the thesis adopted, while the design works further confirm these assumptions.

Go to article

Authors and Affiliations

M. Maj
S. Pysz
R. Żuczek
J. Piekło
E. Czekaj
Download PDF Download RIS Download Bibtex

Abstract

In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade. The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF), which enables the determination of parameters resulting from the Manson-Coffin-Morrow relationship. The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidal graphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties,) confirmed also small variations in the geometrical parameters of graphite related with its content and morphological features.

Go to article

Authors and Affiliations

M. Maj
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a solution of the control system for fatigue test stand MZGS-100 PL, comprising the integrated Real-Time controller based on FPGA (Field-Programmable Gate Array) technology with LabVIEW software. The described control system performs functions such as continuous regulation of speed induction motor, measuring strain of the lever machine and the test specimen, displacement of the polyharmonic vibrator, as well as the elimination of interferences, overload protection and emergency stop of the machine. The fatigue test stand also allows to set the pseudo-random history of energy parameter W(t).

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Wojciech Macek
Ewald Macha

Download PDF Download RIS Download Bibtex

Abstract

The strength of conveyor belts splices made in mines rarely reaches full belt strength. It consists of a number of factors. The primary is the method of their construction and proper selection of ingredients. The significant impact has also has splice quality covering both keeping proper geometry matched to the belt construction and belts working conditions and adherence to the best practices in the field of technologies of their construction.Difficult conditions in underground mines and pressure on reducing conveyor downtime (avoiding production losses) is reflected by a drop in static and dynamic splices strength. This is confirmed by numerous studies of belt splices strength and fatigue life conducted in the Laboratory of Belt Conveying (LTT) within the framework of research and expert opinions commissioned by belt manufacturers and their users. The consequence of too insufficiently low belt splices strength is their low durability, decreasing reliability and, consequently, higher mining transportation costs. Belt splices are in fact the weakest link in the serial structure which form closed loops of interconnected belt sections working in series of conveyors transporting excavated material in the mine. The article presents the results of simulation analyzes analyses investigating how the increase of belt splices durability may contribute to the reduction of transportation costs in the underground mines.

Go to article

Authors and Affiliations

Mirosław Bajda
Ryszard Błażej
Leszek Jurdziak
Monika Hardygóra
Download PDF Download RIS Download Bibtex

Abstract

In the work was presented the results of studies concerns on the destructive mechanisms for forging tools used in the wheel forging process as well the laboratory results obtained on a specially constructed test items for testing abrasive wear and thermal fatigue. The research results of the forging tools shown that the dominant destructive mechanisms are thermal fatigue occurring in the initial the exploitation stage and abrasive wear, which occurs later, and is intensified effects of thermo-mechanical fatigue and oxidation process. In order to better analysis of phenomena associated with destructive mechanisms, the authors built a special test stands allow for a more complete analysis of each of the mechanisms separately under laboratory conditions, which correspond to the industrial forging processes. A comprehensive analysis of the forging tools confirmed by laboratory tests, showed the interaction between the thermal fatigue and abrasive wear, combined with the oxidation process. The obtained results showed that the process of oxidation and thermal fatigue, very often occur together with the mechanism of abrasive wear, creating a synergy effect. This causing the acceleration, the most visible and easily measurable process of abrasive wear.
Go to article

Authors and Affiliations

M. Hawryluk
M. Zwierzchowski
M. Marciniak
Download PDF Download RIS Download Bibtex

Abstract

This study discloses the characteristic features of the modified low-cycle fatigue test used for the determination of the mechanical

properties of two types of cast iron, i.e. EN-GJL-250 and EN-GJS-600-3. For selected materials, metallographic studies were also

conducted in the range of light microscopy and scanning microscopy.

Go to article

Authors and Affiliations

M. Maj
K. Pietrzak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the possibility of using FSW technology for joining elements of a landing gear beam of the M28 aircraft. The FSW process was performed on a 4-axis numerical machine under industrial conditions. However, before welding was carried out under industrial conditions, preliminary experimental tests were carried out under laboratory conditions. Preliminary research was carried out for AA2024-T3 aluminum sheets of 1 mm and 3 mm in thickness, joined in a lap configuration. The influence of technological and geometric parameters of the process on the quality and strength of the weld was examined. Sheet metal arrangement was analyzed. Tests were carried out for two configurations. The first of which with 1 mm sheet on the top and 3 mm sheet on the bottom and in reverse order. It has been shown that setting a thicker plate on the top gives a 40% better strength. The microhardness and microstructure of the weld were tested. During the laboratory tests, low-cycle fatigue tests of the FSW lap joint were performed. It has been shown that the FSW method can be an alternative to the riveting process in the production of aviation structure elements.

Go to article

Authors and Affiliations

P. Myśliwiec
R.E. Śliwa
ORCID: ORCID
R. Ostrowski
ORCID: ORCID
M. Bujny
M. Zwolak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The subject of this paper is a new procedure applied for more precise determination of material fatigue characteristics. The proposed approach is based on a special definition of the strain energy density parameter used for material fatigue property descriptions and, in the consequence, on the new algorithm of the fatigue machine control in the feedback loop. On the basis of fatigue tests under uniaxial tension-compression with the strain energy density parameter control it was proved that the fatigue characteristics in energy approach (Wa - N1) determined directly from the tests and indirectly from the Manson-Coffin relation (E,, - Nj) with the strain control for material showing cyclic stability are similar. However, for material cyclic hardening these characteristics differ significantly in high cycle fatigue regime.
Go to article

Authors and Affiliations

Włodzimierz Będkowski
Ewald Macha
Jacek Slowik
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research work on linear FSW (Friction Stir Welding) joining aluminum alloys AA2024-T3 of 0.5 mm in thickness. The study was conducted on properly adapted numerical controlled 3 axis milling machine using a ceramic tool and special designed fastening device. The tool dimensions have been estimated according to the algorithm shown in the literature [4]. All joints were made of end-to end (butt) configuration under different welding speed. The rotational speed of the tool and tool offset was constant. The effect of selected technological parameters on the quality of the joint was analyzed. Produced butt joint have been subjected to a static tensile testing to identify mechanical features of the materials of joints compared to parent materials. Measurements of micro hardness HV in the plastically formed stir zone of joint and in the parent material have been carried out. Axial and radial welding forces in the joining region were recorded during the tests and their dependency from the welding parameters was studied. Based on the results of strength tests the efficiency of joints for sheets of 0.5 mm in thicknesses oscillated up to 96% compared to the parent material. It has been found that for given parameters the correct, free of defects joints were obtained. The paper also presents the results of low-cycle fatigue tests of obtained FSW joints. The use of a ceramic tool in the FSW process allows to obtain welds with higher strength than conventional tools. The results suggests that FSW can be potentially applied to joining aluminum alloys.

Go to article

Authors and Affiliations

P. Myśliwiec
R.E. Śliwa
ORCID: ORCID
R. Ostrowski
ORCID: ORCID

This page uses 'cookies'. Learn more