Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, the development of smart grids has been the focus of attention due to its advantages for power systems. One of the aspects of smart grids defined by using distributed generation (DG) in a low voltage network is a microgrid (MG). Based on its operational states, MG can operate in different configurations such as grid-connected mode or off-grid mode. The switching between these states is one of the challenging issues in this technical area. The fault currents in different buses have higher value compared to islanded mode of MG when the MG is connected to the main grid, which influences the protection equipment. In this situation, some electrical devices may be damaged due to the fault currents. Application of a fault current limiter (FCL) is considered as an effective way to overcome this challenge. The optimal size of these FCLs can optimize the performance of an MG. In this paper, an index for FCL size optimization has been used. In addition, two optimization algorithms (Bat Algorithm and Cuckoo Search Algorithm) have been applied to the problem. The application of an FCL has been studied in grid-connected and islanded-mode. In addition, the application of the capacitor bank in both modes has been investigated. The results of simulations carried out by MATLAB have been presented and compared.
Go to article

Authors and Affiliations

Ali Asghar Khodadoost Arani
N. Bayati
Reza Mohammadi
G.B. Gharehpetian
S.H. Sadeghi
Download PDF Download RIS Download Bibtex

Abstract

With the availability of UHV engineering technology, the scale of the power network is expanding, and the level of the short-circuit current is getting higher, which brings hidden trouble to the safe and stable operation of the power network. Further this article issued a method that optimized the configuration of a current limiter based on the reliability of the power network. According to the reliability analysis under the influence of a short circuit, the quantitative evaluation of reliability of the power network is realized by the calculation of the short-circuit current.Aquantitative model is established among reliability evaluation and the short-circuit current as well as load loss, the candidate installation site of a current limiter can be determined according to reliability quantification results. This method uses the particle swarm optimization algorithm to optimize the distribution of the limiter, aiming at the reliability level and the minimum number of current limiters in the short circuit of a power grid. Finally, taking the actual power grid of a province as an example, the result shows that this method can reduce the search space of the optimal solution, optimize the configuration of the current limiter, and effectively limit the short-circuit current and improve the reliability of the power network.

Go to article

Authors and Affiliations

Jianjun Zeng
Yonggao Zhang
Download PDF Download RIS Download Bibtex

Abstract

In order to realize selective isolation of fault lines in multi-terminal high voltage DC (MT-HVDC) grids, it is necessary to ensure that the sound lines can still transmit power normally after the grounding fault occurs in a DC power network. If the fault line needs to be cut before the converter is blocked, a DC circuit breaker (DCCB) with large switching capacity is often required. At present, the extreme fault over-current and the high cost of DCCBs have become the prominent contradiction in MT-HVDC projects. Reducing the breaking stress of power electronic devices of the circuit breaker and controlling its cutting-off time are the major difficulties in this research field. In this paper, a topology of a hybrid DCCB with an inductive current limiting device is proposed. By analyzing its working principle, the calculation method of key parameters is given, and a four-terminal HVDC grid is built in a PSCAD/EMTDC platform for fault simulation. The results show that compared with the traditional circuit breaker, this topology can effectively limit the rising speed and maximum current of fault current when the system fails, and quickly remove the fault line, so as to meet the suppression requirement of the HVDC system for fault current.
Go to article

Bibliography

[1] Xu Z., Tu Q.R., Guan M.Y. et al., Voltage source converter based HVDC power transmission systems, China Machine Press, pp. 1–25 (2013).
[2] María José Pérez Molina, Dunixe Marene Larruskain, Pablo Eguía López et al., Analysis of Local Measurement-Based Algorithms for Fault Detection in a Multi-Terminal HVDC Grid, Energies, vol. 12, no. 24, pp. 1–20 (2019), DOI: 10.3390/en12244808.
[3] Li X.Q., Song Q., Liu W.H. et al., Protection of Nonpermanent Faults on DC Overhead Lines in MMC-Based HVDC Systems, IEEE Transactions on Power Delivery, vol. 28, no. 1, pp. 483–490 (2012), DOI: 10.1109/TPWRD.2012.2226249.
[4] Li B., Li Y., He J., DC Fault Handling Scheme for the MMC-based DC System, Proceedings of the CSEE, vol. 36, no. 7, pp. 1944–1950 (2016), DOI: 10.13334/j.0258-8013.pcsee.2016.07.022.
[5] Pan Y., Chen L.X., Yuan Z. et al., Research on Current Limiting and Energy Limiting Technology for DC Power Grid Fault, Proceedings of the CSEE, vol. 40, no. 06, pp. 2006–2016 (2020), DOI: 10.13334/j.0258-8013.pcsee.191833.
[6] Mokhberdoran A., Carvalho A., Silva N. et al., Application study of superconducting fault current limiters in meshed HVDC grids protected by fast protection relay, Electric Power Systems Research, vol. 143, pp. 292–302 (2017), DOI: 10.1016/j.epsr.2016.09.008.
[7] Sanusi W., Al Hosani M., El Moursi M., A novel DC fault ride-through scheme for MTDC Networks connecting large-scale wind parks, IEEE Transaction on Sustainable Energy, vol. 8, no. 3, pp. 1086–1095 (2017), DOI: 10.1109/TSTE.2017.2651025.
[8] Zhou G.Y., Han M.X., Huang W.D., Flexible DC Transmission Fault Protection Strategy Based on Coordination of Current Limiter and Circuit Breaker, Journal of Global Energy Interconnection, vol. 1, no. 05, pp. 594–602 (2018), DOI: 10.19705/j.cnki.issn2096-5125.2018.05.009.
[9] Xing C., Xi X.Z., Liu M.Q., Li S., Study on Optimal Configuration of Current Limiter in HVDC Grid, Journal of Power Supply (2019), DOI: 10.1109/IGBSG.2019.8886310.
[10] Ying L.Z., Liu T.Q., Wang J.Q., Global optimization algorithm for fault current limiter configuration based on rearranged particle swarm optimization, Electric Power Automation Equipment, vol. 38, no. 02, pp.145–152 (2018), DOI: 10.16081/j.issn.1006-6047.2018.02.019.
[11] Li Y., Gong Y.F., Optimal Design Scheme of Current Limiting Reactor for Multi-terminal DC Power Grid, Automation of Electric Power Systems, vol. 42, no. 23, pp. 120–126 (2018).
[12] Li C.Y., Zhao C.Y., Xu J.Z. et al., A pole-to-pole short-circuit fault current calculation method for DC grids, IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4943–4953 (2017), DOI: 10.1109/TPWRS.2017.2682110.
[13] Guo X.Q., Cui X., Qi L. et al., DC short-circuit fault analysis and protection for the overhead line bipolar MMC-HVDC system, Proceedings of the CSEE, vol. 37, no. 8, pp. 2177–2184 (2017), DOI: 10.13334/j.0258-8013.pcsee.162229.
[14] Dantas R., Liang J., Ugalde-Loo C.E. et al., Progressive fault isolation and grid restoration strategy for MTDC networks, IEEE Transactions on Power Delivery, vol. 33, no. 2, pp. 909–918 (2018), DOI: 10.1109/TPWRD.2017.2720844.
[15] Tang G.F., Wang G.Y., He Z.Y. et al., Research on key technology and equipment for Zhangbei 500 kV DC grid, High Voltage Engineering, vol. 44, no. 7, pp. 2097–2106 (2018), DOI: 10.13336/j.1003-6520.hve.20180628001.
[16] Lu W., Wang W.J., Fang T.X. et al., Test technology of hybrid HVDC circuit breaker, High Voltage Engineering, vol. 44, no. 5, pp. 1685–1691 (2018), DOI: 10.13336/j.1003-6520.hve.20180430038.
[17] Li C., Li Y., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 69, no. 1, pp. 5–21 (2020), DOI: 10.24425/aee.2020.131755.
[18] Liu J., Tai N.L., Fan C.J. et al., A hybrid current-limiting circuit for DC line fault in multi-terminal VSC-HVDC system, IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5595–5607 (2017), DOI: 10.1109/TIE.2017.2677311.
[19] Tang S., Jia G.L., Zhang H. et al., Topology of DC Circuit Breaker with Pre-current-limiting Capability for DC Grid, Automation of Electric Power Systems, vol. 44, no. 11, pp. 152–168 (2020).
[20] Peng C., Song X., Huang A.Q. et al., A medium-voltage hybrid DC circuit breaker, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, iss. 1, pp. 289–296 (2017), DOI: 10.1109/JESTPE.2016.2609391.
[21] Han X., Sima W., Yang M. et al., Transient characteristics underground and short-circuit faults in a +- 500 kV MMC-based HVDC system with hybrid DC circuit breakers, IEEE Transactions on Power Delivery, vol. 33, no. 3, pp. 1378–1387 (2018), DOI: 10.1109/TPWRD.2018.2795800.
[22] Du X.L., Guo Q.L., Wu Y.K. et al., Research on control system structure and coordination control strategy for Zhangbei Demonstration Project of MMC-HVDC Grid, Power System Protection and Control, vol. 9, pp. 164–173 (2018), DOI: 10.19783/j.cnki.pspc.190607.
[23] Guo X.S., Li T., Li G.W. et al., Optimization of fault ride-through strategy and protection setting value of convert valve for Zhangbei VSC-HVDC transmission system, Automation of Electric Systems, vol. 42, no. 24, pp. 196–205 (2018).
[24] Wei X.W., Su S.P., Qiu X. et al., A Novel Optimized Capacitor Voltage Balancing Method for Modular Multilevel Converter, Power System Technology, vol. 41, no. 03, pp. 729–735 (2017), DOI: 10.13335/j.1000-3673.pst.2016.1301.
[25] ShiW., Cao D.M.,Yang B. et al., 500 kV commutation-based hybrid HVDC circuit breaker, Automation of Electric Power Systems, vol. 42, no. 7, pp. 102–107 (2018), DOI: CNKI:SUN:DLXT.0.2018-07-014.
Go to article

Authors and Affiliations

Sihua Wang
1
ORCID: ORCID
Lei Zhao
1
Lijun Zhou
2

  1. College of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
  2. Lanzhou Jiaotong University, China

This page uses 'cookies'. Learn more