Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present a synthesis of the parameters of the fiber Bragg grating (FBG) and the reconstruction of the distributed strain affecting the grating, performed by means of its reflection spectrum. For this purpose, we applied the transition matrix method and the Nelder-Mead nonlinear optimization method. Reconstruction results of the strain profile carried out on the basis of a simulated reflection spectrum as well as measured reflection spectrum of the FBG indicate good agreement with the original strain profile; the profile reconstruction errors are within the single digit percentage range. We can conclude that the Nelder-Mead optimization method combined with the transition matrix method can be used for distributed sensing problems.

Go to article

Authors and Affiliations

Małgorzata Detka
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a simulation study of the simultaneous reconstruction of the non-smooth strain distribution of an optical fiber Bragg grating and its temperature, which is based on the reflection spectrum of the reflected beam of the grating. The transition matrix method was used to model the reflection spectrum of the grating, and the nonlinear Nelder- Mead optimization method was used to simultaneously reconstruct the strain distribution along the grating and its temperature. The results of simulations of simultaneous reconstruction of the strain profile and temperature indicate good accord with the strain profiles and temperature set. The reconstruction errors of the strain profiles are less than 1.2 percent and the temperature change errors are less than 0.2 percent, with a noise level of 5 percent.
Go to article

Authors and Affiliations

Małgorzata Detka
1
Cezary Kaczmarek
2

  1. Faculty of Electrical Engineering, Automatic Control and Computer Science, Kielce University of Technology, Poland
  2. Faculty of Electrical Engineering and ComputerScience, Lublin University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article proposes an unequivocal method of labeling and numbering the cladding modes propagating in single-mode opticalwaveguides with tilted periodic structures. The unambiguous determination of individual propagating modes in this type of optical fiber is crucial for their use in sensory systems. The selection of the appropriate spectral range and mode determines the sensitivity and measuring range of tilted fiber Bragg grating (TFBG) sensors. The measurement methods proposed by individual research teams using TFBGs as transducers are usually based on the selection of specific modes. Unification of the labeling of modes and their numbering enables comparison of the basic metrological parameters of individual measurement methods and reproduction and verification of the proposed sensors and methods in the laboratories of other scientific and research centers.
Go to article

Authors and Affiliations

Piotr Kisała
1
Aliya Kalizhanova
2 3
Ainur Kozbakova
2
Bakhyt Yeraliyeva
4

  1. Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  2. Institute of Information and Computational Technologies CS MES RK, 050010, 125 Pushkin str., Almaty,Republic of Kazakhstan
  3. Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev, Almaty 050010,Kazakhstan, Almaty, Shevshenko 28
  4. Taraz State University after M.Kh. Dulaty, Tole Bi St 40, Taraz, Republic of Kazachstan
Download PDF Download RIS Download Bibtex

Abstract

In this article, we study tilted fiber Bragg gratings (TFBGs) with tilt angles of 6◦ and 8◦, their transmission spectra, and spectral parameters that have a linear dependence on the refractive index of the environment. It is shown that there can be several such characteristics, such as the minimum, width and energy of the spectrum. The linear dependence of the spectrum width on the refractive index does not depend on the tilt angle. The linear dependence of the spectrum minimum is only observed for a tilt angle of 8◦. The results of this work can be used to create a sensor system based on an optical fiber.

Go to article

Authors and Affiliations

Akmaral Tolegenova
Piotr A. Kisała
Ainur Zhetpisbayeva
Orken Mamyrbayev
Bekbolat Medetov
Download PDF Download RIS Download Bibtex

Abstract

The article presents an analysis of the impact of bending optical fibers with tilted Bragg gratings on their spectral parameters. This article proves that it is possible to a choose TFBG cladding mode and the optical spectrum range related to it that allows the best metrological properties to be obtained when measuring bend. The results contained in the paper explain why the minima in the spectral characteristics, corresponding only to some cladding modes, change their shape during TFBG bending, which is important for application of Bragg gratings as bending sensors. It has been presented that in the case of TFBG we are able to aggregate the knowledge obtained during experiment to the form of a physical model of the fiber bending sensor.
Go to article

Authors and Affiliations

Piotr Kisała
1

  1. Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Monitoring the stress change of bolt and knowing the anchoring condition in a reasonable and effective way, accurately, can effectively prevent tunnel accident from breaking out. The stress of rock mass around the roadway is usually transferred to the anchor rod in the form of axial load, so it is of great significance to study the axial load of the bolt. In this paper, a full size anchoring and drawing experiment system was designed and established, innovatively, which realized the pull-out test of 2.5 m prestressed end Anchorage and the full-length Anchorage by using the new resin anchorage agent under vertical and horizontal loads. Through the application of fiber Bragg grating (FBG) sensing technology to the test of full-scale anchor rod, the axial force distribution characteristics of the end Anchorage and the full-length Anchorage anchor rod were obtained under the action of pre-tightening torque and confining rock pressure. The comparison indicates that the proportion of high stress range accounts for only 17.5% and the main bearing range is near the thread end of anchor rod, the proportion of main bearing range of end Anchorage is 83.3%, and the feasibility of FBG force-measuring anchor rod is verified in the field. The research results have certain reference value.

Go to article

Authors and Affiliations

Tuo Wang
Jucai Chang
Peng Gong
ORCID: ORCID
Wenbao Shi
Ning Li
Shixing Cheng
Download PDF Download RIS Download Bibtex

Abstract

In this paper, based on the feasible method and sensors for the full-scale prestressed monitor, the novel optical fiber sensors and the traditional monitoring sensors will be set up into two prestressed concrete beams with the same geometrical dimensions, material properties, and construction conditions, etc. to investigate the working state of the novel sensors and obtain the evolution law of prestress loss of the prestressed feature component under the static load. The results show that the evolution law of prestress loss of the loaded beam under the condition of no damage state and initial crack is the same as the non-loaded one; however, the prestress loss increases with the increase of time under the situation with the limit crack. The total loss of the prestressed beam with the limit crack is 36.4% without damage. The prestress loss of the prestressed beam under the static load increase with the development of the crack (injury).
Go to article

Authors and Affiliations

Jinbo Wang
1
ORCID: ORCID
Guodong Li
1
ORCID: ORCID
Chunguang Lan
2
ORCID: ORCID
Nan Guo
1
ORCID: ORCID

  1. Northeast Forestry University, School of Civil Engineering, Al. Harbin City, Heilongjiang Province, China
  2. Beijing Building Construction Research Institute Co., Ltd, A1. Beijing, China

This page uses 'cookies'. Learn more