Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We experimentally studied three different D-shape polymer optical fibres with an exposed core for their applications as surface plasmon resonance sensors. The first one was a conventional D-shape fibre with no microstructure while in two others the fibre core was surrounded by two rings of air holes. In one of the microstructured fibres we introduced special absorbing inclusions placed outside the microstructure to attenuate leaky modes. We compared the performance of the surface plasmon resonance sensors based on the three fibres. We showed that the fibre bending enhances the resonance in all investigated fibres. The measured sensitivity of about 610 nm/RIUfor the refractive index of glycerol solution around 1.350 is similar in all fabricated sensors. However, the spectral width of the resonance curve is significantly lower for the fibre with inclusions suppressing the leaky modes.

Go to article

Authors and Affiliations

K. Gasior
T. Martynkien
G. Wojcik
P. Mergo
W. Urbanczyk
Download PDF Download RIS Download Bibtex

Abstract

We experimentally studied three different D-shape polymer optical fibres with an exposed core for their applications as surface plasmon resonance sensors. The first one was a conventional D-shape fibre with no microstructure while in two others the fibre core was surrounded by two rings of air holes. In one of the microstructured fibres we introduced special absorbing inclusions placed outside the microstructure to attenuate leaky modes. We compared the performance of the surface plasmon resonance sensors based on the three fibres. We showed that the fibre bending enhances the resonance in all investigated fibres. The measured sensitivity of about 610 nm/RIU for the refractive index of glycerol solution around 1.350 is similar in all fabricated sensors. However, the spectral width of the resonance curve is significantly lower for the fibre with inclusions suppressing the leaky modes.

Go to article

Authors and Affiliations

K. Gasior
T. Martynkien
G. Wojcik
P. Mergo
W. Urbanczyk
Download PDF Download RIS Download Bibtex

Abstract

In this work the influence of the cavity parameters on optical losses of a simple intensity-based in-line refractive index sensor utilizing a micromachined side-hole fibre was studied by means of numerical simulations. To perform these simulations, the Authors used the finite-difference time-domain method. The proposed sensor setup consists of light source, micromachined optical fibre as a sensor head, and a detector which makes it low-cost and easy to build. The changes of the external refractive index can be, therefore, recovered by direct measurements of the transmitted intensity from which insertion loss values can be calculated. By changing geometry of the cavity micromachined into the side-hole optical fibre, it was possible to determine its influence on the final sensor sensitivity and measurements range. Based on the provided analysis of simulations results, a simple fibre optic sensor can be fabricated mainly for sensing external liquids refractive index for application in biochemistry or healthcare.
Go to article

Bibliography

  1. Grattan, K. T. V. & Sun, T. Fibre optic sensor technology: an overview. Actuator A Phys. 82, 40–61 (2000). https://doi.org/10.1016/S0924-4247(99)00368-4
  2. Zhou, X., Zhang, L. & Pang, W. Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection. Express 24, 18197–18208 (2016). https://doi.org/10.1364/OE.24.018197
  3. Rao, Y.-J. & Ran, Z.-L. Optic fibre sensors fabricated by laser-micromachining. Fiber Technol. 19 808–821 (2013). https://doi.org/10.1016/j.yofte.2013.07.016
  4. Wang, Y., Liao, C. R. & Wang, D. N. Femtosecond laser-assisted selective infiltration of microstructured optical fibres. Express 18, 18056–18060 (2010). https://doi.org/10.1364/OE.18.018056
  5. Pallarés-Aldeiturriaga, D., Roldán-Varona, P., Rodríguez-Cobo, L. & López-Higuera, J. M. Optical fibre sensors by direct laser processing: A review. Sensors 20, 6971 (2020). https://doi.org/10.3390/s20236971
  6. Kumar, A., Pankaj, V. & Poonam, J. Refractive index sensor for sensing high refractive index bioliquids at the THz frequency. Opt. Soc. Am. B 38, F81–F89 (2021). https://doi.org/10.1364/JOSAB.438367
  7. Pérez, M. A., González, O. & Arias, J. R., Optical Fibre Sensors for Chemical and Biological Measurements. in Current Developments in Optical Fibre Technology (eds. Harun, S. W. & Arof, H.) (IntechOpen, 2013). https://doi.org/10.5772/52741
  8. Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 16, 634–644 (2016). https://doi.org/1039/C5LC01445J
  9. Leal-Junior, A. G. et al. Polymer optical fibre sensors in healthcare applications: A comprehensive review. Sensors 19, 3156 (2019). https://doi.org/10.3390/s19143156
  10. Yan, X., Li, H. & Su, X. Review of optical sensors for pesticides. Trends Analyt. Chem. 103, 1–20 (2018). https://doi.org/10.1016/j.trac.2018.03.004
  11. Joe, H. E., Yun, H., Jo, S.-H., Jun, M. G. & Min, B.-K. A review on optical fibre sensors for environmental monitoring. Int. J. Pr. Eng. Man-Gt. 5, 173–191 (2018). https://doi.org/10.1007/s40684-018-0017-6
  12. Costa, G. K. B. et al. In-fibre Fabry-Perot interferometer for strain and magnetic field sensing. Express 24, 14690–14696 (2016). https://doi.org/10.1364/OE.24.014690
  13. Zhou, N. et al. MEMS-based reflective intensity-modulated fibre-optic sensor for pressure measurements. Sensors 15, 2233 (2020). https://doi.org/3390/s20082233
  14. Pevec, S. & Donlagic, D. Multiparameter fibre-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive index, and temperature. IEEE Photon. J. 9, 1–14 (2017). https://doi.org/10.1109/JPHOT.2017.2651978
  15. Stasiewicz, K. A., Jakubowska, I. & Dudek, M. Detection of organosulfur and organophosphorus compounds using a hexafluoro-butyl acrylate-coated tapered optical fibres. Polymers 14, 612 (2022). https://doi.org/10.3390/polym14030612
  16. Pura, P. et al. Polymer microtips at different types of optical fibres as functional elements for sensing applications. Light. Technol. 3, 2398–2404 (2015). https://doi.org/10.1109/JLT.2014.2385961
  17. Marć, P., Żuchowska, M. & Jaroszewicz, L. Reflective properties of a polymer micro-transducer for an optical fibre refractive index sensor. Sensors 20, 6964 (2020). https://doi.org/10.3390/s20236964
  18. Marć, P., Żuchowska, M., Jakubowska, I. & Jaroszewicz, L. R. Polymer microtip on a multimode optical fibre as a threshold volatile organic compounds sensor. Sensors 22, 1246 (2022). https://doi.org/10.3390/s22031246
  19. Tian, Z., Yam, S. S. H. & Loock, H. P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fibre. Lett. 33, 1105–1107 (2008). https://doi.org/10.1364/OL.33.001105
  20. Ran, Z., Rao, Z., Zhang, J., Liu, Z. & Xu, B. A Miniature fibre-optic refractive-index sensor based on laser-machined fabry–perot interferometer tip. Light. Technol. 27, 5426–5429 (2009). https://doi.org/10.1109/JLT.2009.2031656
  21. Wei, T., Han, Y., Li, Y., Tsai, H. L. &. Xiao, H. Temperature-insensitive miniaturized fibre inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Express 16, 5764–5769 (2008). https://doi.org/10.1364/OE.16.005764
  22. Enokihara, A., Izutsu, M. & Sueta, T. Optical fibre sensors using the method of polarization-rotated reflection. Light. Technol. 5, 1584–1590 (1987). https://doi.org/10.1109/JLT.1987.1075449
  23. Zheng, Y., Li, J., Liu, Y., Li, Y. & Qu, S. Dual-parameter demodu-lated torsion sensor based on the Lyot filter with a twisted polarization-maintaining fibre. Express 30, 2288–2298, (2022). https://doi.org/10.1364/OE.448088
  24. Jin, W. et al. Recent advances in spectroscopic gas sensing with micro/nano-structured optical fibres. Photonic Sens. 11, 141–157 (2021). https://doi.org/10.1007/s13320-021-0627-4
  25. Xie, H. M., Dabkiewicz, Ph., Ulrich, R. & Okamoto, K. Side-hole fibre for fibre-optic pressure sensing. Lett. 11, 333–335 (1986). https://doi.org/10.1364/OL.11.000333
  26. Bao, L., Dong, X., Shum, P. P. & Shen, C. High sensitivity liquid level sensor based on a hollow core fibre structure. Commun. 499, 127279 (2019). https://doi.org/10.1016/j.optcom.2021.127279
  27. Lin, H., Liu, F., Guo, H., Zhou A. & Dai, Y. Ultra-highly sensitive gas pressure sensor based on dual side-hole fibre interferometers with Vernier effect. Express 26, 28763–28772 (2018). https://doi.org/10.1364/OE.26.028763
  28. Taflove, A. & Hagness, S. C. Computational Electrodynamics – The Finite-Difference Time-Domain Method – 3rd Edition. (Artech House, 2005). https://us.artechhouse.com/Computational-Electrodynamics-Third-Edition-P1929.aspx
  29. Bird, T. S. Definition and misuse of return loss [Report of the Transactions Editor-in-Chief]. IEEE Antennas Propag. Mag. 51, 166–167 (2009). https://doi.org/10.1109/MAP.2009.5162049
Go to article

Authors and Affiliations

Michał Dudek
1
ORCID: ORCID
Kinga.K. Köllő
1

  1. Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland

This page uses 'cookies'. Learn more