Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

ISFET (Ion Sensitive Field Effect Transistors) microsensors are widely used for pH measurements as well as analytical and biomedical applications. At the same time, ISFET is a good candidate for testing various materials for their applications in sensitive membranes. For example, hydrogen sensitive carbonaceous films containing Pd nanocrystallites (C–Pd) make this material very interesting for sensor applications. A cost effective silicon technology was selected to fabricate n-channel transistors. The structures were coupled to specially designed double-sided PCB (Printed Circuit Board) holder. The holder enables assembly of the structure as part of an automatic stand. The last step of production of MIS structures was deposition of the C–Pd layer. The C–Pd films were fabricated by the Physical Vapor Deposition (PVD) method in which C60 and palladium acetate were evaporated. Electrical resistance of structures with C–Pd films was measured during their interaction with hydrogen. Finally, a new type of highly sensitive FET hydrogen sensor with C–Pd layer was demonstrated and characterized.

Go to article

Authors and Affiliations

Piotr Firek
Sławomir Krawczyk
Halina Wronka
Elżbieta Czerwosz
Jan Szmidt
Download PDF Download RIS Download Bibtex

Abstract

The behavioural model of a graphene field-effect transistor (GFET) is proposed. In this approach the GFET element is treated as a “black box” with only external terminals available and without considering the physical phenomena directly. The presented circuit model was constructed to reflect steady-state characteristics taking also into account GFET capacitances. The authors’ model is defined by a relatively small number of equations which are not nested and all the parameters can be easily extracted. It was demonstrated that the proposed model allows to simulate the steady-state characteristics with the accuracy approximately as high as in the case of the physical model. The presented compact GFET model can be used for circuit or system-level simulations in the future.

Go to article

Authors and Affiliations

Maciej Łuszczek
Marek Turzyński
Dariusz Świsulski
Download PDF Download RIS Download Bibtex

Abstract

We propose a novel magnetic field sensitive semiconductor device, viz., Horizontally-Split-Drain Magnetic-Field Sensitive Field-Effect Transistor (HSDMAGFET) which can be used to measure or detect steady or variable magnetic fields. Operating principle of the transistor is based on one of the galvanomagnetic phenomena and a Gradual Channel Detachment Effect (GCDE) and is very similar to that of Popovic and Baltes's SDMAGFET. The predicted absolute sensitivity of the new sensor can reach as high value as 1000 V/T. Furthermore, due to its original structure, the spatial resolution of the new MAGFET is very high which makes this device especially useful in reading magnetically encoded data or magnetic pattern recognition.

Go to article

Authors and Affiliations

W. Kordalski
M. Polowczyk
M. Panek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a low noise voltage FET amplifier for low frequency noise measurements. It was built using two stages of an op amp transimpedance amplifier. To reduce voltage noise, eight-paralleled low noise discrete JFETs were used in the first stage. The designed amplifier was then compared to commercial ones. Its measured value of voltage noise spectral density is around 24 nV/√ Hz, 3 nV/√ Hz, 0.95 nV/√Hz and 0.6 nV/√ Hz at the frequency of 0.1, 1, 10 and 100 Hz, respectively. A −3 dB frequency response is from ∼ 20 mHz to ∼ 600 kHz.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
ORCID: ORCID
Janusz Mikołajczyk
ORCID: ORCID
Zbigniew Bielecki
ORCID: ORCID

This page uses 'cookies'. Learn more