Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the preparation and measurement of an experimental polymer graphite cathode that

seems to be a promising and cheap source of electrons utilizing cold field-emission in high- and ultra-high

vacuum. Polymer graphite seems to be a proper material as it contains a large amount of hybridized carbon

with a low degree of surface oxidation and silicon monoxide (SiO). Within the frame of this work, a special

experimental method of tip preparation has been designed and tuned. This method is based on ion milling

inside a dual-beam electron microscope enabling to obtain ultra-sharp tips of a diameter smaller than 100 nm

with a predefined opening angle. The charge transport within experimental samples is evaluated based on

results provided by the noise spectroscopy of the total emission current in the time and frequency domains.

Go to article

Authors and Affiliations

Alexandr Knápek
Miroslav Horáček
Jana Chlumská
Tomáš Kuparowitz
Dinara Sobola
Josef Šikula
Download PDF Download RIS Download Bibtex

Abstract

The electron field and photo-field emission from GaN nanostructures has been analyzed in this review. In order to explain the obtained experimental results, a model was proposed taking into account the change in carrier concentration distribution in the main and the satellite valley during the emission process. The lowering of work function (due to the increased number of carriers in the satellite valley) can explain the decrease in the Fowler-Nordheim plot slope. It was shown that the energy difference between the main and satellite valley in GaN was decreased in the case of quantum confinement, thus increasing the probability of electron transition from Γ to X valley at same electric fields.

Investigations of electron photo-field emission demonstrated that the Fowler–Nordheim plots of the emission current have different slopes for nonilluminated and illuminated devices. A model based on the electron emission from valleys having different specific electron affinities is proposed to explain the experimental results. In the absence of illumination the emission takes place only from the lower valley. Upon UV illumination and presence of a high electric field at the emitter tip, the upper valley of the conduction band appears to be occupied by electrons generated at the valence band.

Go to article

Authors and Affiliations

V. Litovchenko
A. Evtukh
A. Grygoriev
Download PDF Download RIS Download Bibtex

Abstract

Noise diagnostics has been performed on the cold field-emission cathode in high-vacuum. The tested cold field-emission cathode, based on tungsten wire with ultra-sharp tip coated by epoxy was designed to meet the requirements of transmission electron microscopy, which uses a small and stable source of electrons. Current fluctuations are reduced by improving the structure and fabrication technology. Noise was measured both in time and frequency domains, which gives information about current fluctuations and also about charge transport. Mutual correlation between the noise spectral density, extractor voltage and beam brightness was analyzed.

Go to article

Authors and Affiliations

Alexandr Knápek
Lubomír Grmela
Josef Šikula
Ondřej Šik
Download PDF Download RIS Download Bibtex

Abstract

The techniques of micro and nano structurization of surfaces of various materials are utilized in electronics and medicine. Such procedure as wet and dry etching allows to fabricate protruded or recessed micro and nanostructures on the surface. In the paper some examples of utilization of a surface structurization, known from literature, are described. Some structurization methods and experimental results for fabrication of the arrays of sharp microtips are presented. Wet and/or dry etching, and thermal oxidation process were used to form the arrays of sharp gated and non-gated, protruded or recessed silicon microtips on silicon wafer. For the first time, the arrays of silicon carbide (SiC) microtips on glass wafer have been produced by use of the transfer mold technique. Arrays of sharp microtips are used as field electron emission cathodes for vacuum microelectronics devices. Some electron emission measurements for these cathodes have been carried out. New application of silicon microtips array in biochemistry has been tested with satisfactory results.

Go to article

Authors and Affiliations

A. Górecka-Drzazga
Download PDF Download RIS Download Bibtex

Abstract

Photofield emission from SiGe nanoislands formed by molecular beam epitaxy (MBE) have been investigated. Two types of nanoislands, namely the domes and pyramids with different heights, have been addressed. It was found that the arrays of SiGe nanoislands exhibited a low onset voltage for field emission. The increase of emission current and the decrease of the curve slope in Fowler-Nordheim coordinates under green light illumination have been revealed. Electron field emission and photoemission from SiGe nanoislands have been explained based on the energy band diagram of Si-Ge heterostructure and some energy barriers have been determined.

Go to article

Authors and Affiliations

O. Steblova
A. Evtukh
O. Yilmazoglu
V. Yukhymchuk
H. Hartnagel
H. Mimura

This page uses 'cookies'. Learn more