Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 21
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The research was conducted at the Kwiatków site,1 in the Koło Basin (Central Poland). It included a fragment of a low terrace and the valley floor of the Warta river valley. The archaeological investigation documented over 100 wells that archaeological material indicates are associated with the Przeworsk culture. Geomorphological, lithological and geochemical studies were carried out at the archaeological sites and their surroundings. Selected for the presentation were two wells whose fillings were carefully tested and subjected to geochemical and lithological analyses. The wells showed a slightly different content of artifacts, as well as differences in their grain-size distributions, the structure of their filling deposits, and their geochemistry. This allows us to conclude that the two wells were used differently, but also probably about a different course for how each well was filled after the end of its operation.

Go to article

Authors and Affiliations

Magdalena Piotrowska
Daniel Okupny
Juliusz Twardy
Jacek Forysiak
Download PDF Download RIS Download Bibtex

Abstract

It is an established fact that when roads are planned and constructed, consideration needs to be given to ensuring the strength of the road surface. It is, however, also the case that when an existing road is being rebuilt or is under maintenance, its base may need to be fortified to increase the road’s vehicle-carrying capacity. The base may, for example, contain a high proportion of weak soil that would be difficult, time-consuming, and costly to remove. This paper aims to investigate the efficacy of using sand-filled piles to reduce road deformation. Experiments conducted on sponge samples confirm that there is a relationship between the total area of sand-filled piles and relative reduction in deformation. It finds that the relationship is non-linear, but that the relationship can be made linear by adjusting the area of sand-filled piles. When the area of sand-filled piles increases from 7.8% to 19.4%, the deformation module can change by up to 100%. Relative reduction in deformation can change from 14% to 45.5% when the area of sand-filled piles increases from 7.8% to 11.7%. The maximum reduction in deformation – 92.4% - occurs when the area of sand-filled piles exceeds 19.5%. Changing the loads borne also affects the deformation module. This paper found that when there was a 10 to 15kg load, and the number of sandfilled piles was increased, there was a change in the deformation module by 380-470%. When there was only a 5kg load on the sample, and the number of sand-filled piles was increased, there was a change in the deformation module by up to 1217%.
Go to article

Authors and Affiliations

Sami Mohammed Ayyad
1
Omar Asad Ahmad
1
ORCID: ORCID

  1. Amman Arab University, Faculty of Civil Engineering, Civil Engineering Department; Amman, Jordan Street–Mubis, 11953, Jordan,
Download PDF Download RIS Download Bibtex

Abstract

Mine drainage and discharge of salt waters into water bodies belong to main environmental issues, which must be appropriately addressed by the underground coal mining industry. The large area of exploited and abandoned mine fields in the Upper Silesia Coal Basin, as well as the geological structure of the rock mass and its hydrogeological conditions require the draining and discharge of about 119 million m3/yr of mine waters. Increasing the depth of mining and the necessity of protection of mines against water hazard result in increased amounts of chlorides and sulphates in the mine waters, even by decreasing the total coal output and the number of mines. The majority of the salts are being discharged directly into rivers, partly under control of salt concentration, however from the point of the view of environment protection, the most favorable way of their utilization would be technologies allowing the bulk use of saline waters. Filling of underground voids represents a group of such methods, from which the filling of goaves (cavings) is the most effective. Due to large volume of voids resulting from the extraction of coal and taking the numerous limitations of this method into account, the potential capacity for filling reaches about 17.7 million m3/yr of cavings and unnecessary workings. Considering the limited availability of fly ash, which is the main component of slurries being in use for the filling of voids, the total volume of saline water and brines, which could be utilized, has been assessed as 3,5–6,5 million m3/yr

Go to article

Authors and Affiliations

Grzegorz Strozik
Download PDF Download RIS Download Bibtex

Abstract

An experimental investigation was performed on the thermal performance and heat transfer characteristics of acetone/zirconia nanofluid in a straight (rod) gravity-assisted heat pipe. The heat pipe was fabricated from copper with a diameter of 15 mm, evaporator-condenser length of 100 mm and adiabatic length of 50 mm. The zirconia-acetone nanofluid was prepared at 0.05–0.15% wt. Influence of heat flux applied to the evaporator, filling ratio, tilt angle and mass concentration of nanofluid on the heat transfer coefficient of heat pipe was investigated. Results showed that the use of nanofluid increases the heat transfer coefficient while decreasing the thermal resistance of the heat pipe. However, for the filling ratio and tilt angle values, the heat transfer coefficient initially increases with an increase in both. However, from a specific value, which was 0.65 for filling ratio and 60–65 deg for tilt angle, the heat transfer coefficient was suppressed. This was attributed to the limitation in the internal space of the heat pipe and also the accumulation of working fluid inside the bottom of the heat pipe due to the large tilt angle. Overall, zirconia-acetone showed a great potential to increase the thermal performance of the heat pipe.

Go to article

Authors and Affiliations

Amin Abdolhossein Zadeh
Shima Nakhjavani
Download PDF Download RIS Download Bibtex

Abstract

Performance parameter of a Bragg fiber waveguide based resonant sensor in presence of a defect layer in cladding regions is theoretically studied. The Bragg fiber waveguide consists of a liquid-core surrounded by alternate high and low refractive indices materials in cladding regions. Reflectivity of the proposed waveguide based resonant sensor is formulated using transfer matrix method for a non-homogeneous multilayer cylindrical system. The waveguide shows a band gap region with a narrow defect mode in the band gap region under the considered wavelength range. Instead of taking a whole band gap as a sensing signal, here the defect peak is taken as the sensing signal. It is observed that the intensity of defect mode is more sensitive for core refractive index than the intensity of traditional band gap region (lobe). This study shows that the higher sensitivity can be achieved by creating the defect at a position in cladding region where the intensity of transmitted light lies between 40% and 90%. Presence of a defect layer is able to increase the detection accuracy of the sensor and, hence increase the overall performance of this sensor.

Go to article

Authors and Affiliations

R.K. Chourasia
S. Prasad
V. Singh
Download PDF Download RIS Download Bibtex

Abstract

Air entrainment defect is a common type of defect in the casting process, which will seriously affect the quality of the casting. Numerical simulation technology can predict the occurrence of casting defects according to the evolution law of liquid metal in the process of fill ing and solidification. The simulation of air entrainment process is a hot and difficult issue in the field of numerical simulation. The evolution law of air entrainment and the tracking of induced bubbles in the process of metal filling are still lacking. So is the quantitative prediction of trained gas. In this paper, based on the numerical simulation software of Inte CAST, this paper proposes an algorithm for air entrainment search and tracking, which is used to develop a quantitative prediction system for air entrainment. The feasibility of the system is verified through the simulation calculation of the typical test pieces of the air entrainment and the prediction of air entrainment defects of the casting in the process of filling is obtained through the simulation calculation of the actual casting, which can provide a certain guiding role for the optimization of the process in the production practice.
Go to article

Bibliography

[1] Hu, L., Feng, Z.P., Feng, L., Duan, S.P. & Liang, S.P. (2016). Numerical simulation of porosity defects in casting filling process. DOI:10.16410/j.issn1000-8365.2016. 02.030. (in Chinese)
[2] Bi, C. (2016). Study on numerical simulation of gas entrapment and external solidified crystals during mold filling of high pressure die casting process. Doctoral dissertation, Tsinghua University. (in Chinese).
[3] Yu, M.Q., Xia, W., Cao, W.J. & Zhou, Z.Y. (2010). Numerical simulation of filling process and air entrapment condition of Al alloy die-casting. Hot Working Technology. 01, 36-39. DOI:10.14158/j.cnki.1001-3814.2010.01.039. (in Chinese).
[4] Hernández-Ortega, Juan, J., Zamora, Rosendo, & Palacios, et al. (2007). Experimental and numerical study of air entrapment during the filling of a mould cavity in die casting. In 10th Esaform Conference on Material Forming, 18-20 April 2007 (1430-1435). Zaragoza, Spain.
[5] Guerra, F.V., Archer, L., Hardin, R.A & Beckermann C. (2019). Measurement of air entrainment during pouring of an aluminum alloy. Shape Casting. 80, 31-40. https://doi.org/10.1007/s11663-020-01998-3.
[6] Chen, Y.X., Chen, Z. & Liao, D.M. (2021). Prediction of air entrapment defect in casings based on gas phase tracking and bubble breaking criterior. Foundry. 70(07), 806-812.
[7] Caboussat, A., Picasso, M. & Rappaz, J. (2005). Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas. Journal of Computational Physics. 203(2), 626-649. https://doi.org/10.1016/ j.jcp.2004.09.009.
[8] Kimatsuka, A., Ohnaka, I., Zhu, J.D., Sugiyama, A. & Kuroki, Y.(2006). Mold filling simulation for predicting gas porosity. IHI Engineering Review. 40(2), 83-88.
[9] Yang, X., Huang, X., Dai, X., Campbell, J. & Tatler, J. (2004). Numerical modelling of entrainment of oxide film defects in filling of aluminium alloy castings. International Journal of Cast Metals Research, 17(6), 321-331. https://doi.org/10.1179/136404604225022748.
[10] Dai, X., Jolly, M., Yang, X., & Campbell, J. (2012). Modelling of liquid metal flow and oxide film defects in filling of aluminium alloy castings. IOP Conference Series Materials Science and Engineering, 33(1), 2073.
[11] Reilly, C., Green, N.R., Jolly, M.R. & Gebelin, J.C. (2013). The modelling of oxide film entrainment in casting systems using computational modelling. Applied Mathematical Modelling, 37(18-19), 8451-8466. https://doi.org/10.1016/j.apm.2013.03.061.
[12] Reilly, C., Green, N.R. & Jolly, M.R. (2013). The present state of modeling entrainment defects in the shape casting process. Applied Mathematical Modelling. 37(3), 611-628. https://doi.org/10.1016/j.apm.2012.04.032.
[13] Majidi, Hojjat, S., Beckermann, & Christoph. (2017). Modelling of air entrainment during pouring of metal castings. International Journal of Cast Metals Research. 30(5), 301-315. https://doi.org/10.1080/13640461.2017. 1307624.
[14] Cao, LiuLiao, DunmingSun, FeiChen, TaoTeng, ZihaoTang, Yulong. (2018). Prediction of gas entrapment defects during zinc alloy high-pressure die casting based on gas-liquid multiphase flow model. The International Journal of Advanced Manufacturing Technology. 94, 807-815. https://doi.org/10.1007/s00170-017-0926-5.
Go to article

Authors and Affiliations

Yajun Yin
1
Yao Xie
2
Yingchen Song
1
Xu Shen
1
Xiaoyuan Ji
1
Jianxin Zhou
1

  1. Huazhong University of Science and Technology, China
  2. State Key Laboratory of Special Rare Metal Materials, China
Download PDF Download RIS Download Bibtex

Abstract

The study investigates the axial load behaviour of concrete filled battened steel columns not covered by the design standards. A series of full scale tests on two I-sections connected together with intermediate batten plates and filled with concrete were carried out. The main parameters varied in the tests are length of the members and strength of the concrete filling. One bare steel member was also tested and results were compared with those filled with concrete. The tests results were illustrated by load-strain curves. The main objectives of these tests were twofold: first, to describe behaviour of new steel-concrete columns and second, to analyze the influence of slenderness on load-carrying capacity.

Go to article

Authors and Affiliations

M. Siennicki
Download PDF Download RIS Download Bibtex

Abstract

Self compacting concrete (SCC) filling layer is core structure of China rail track system (CRTS) ? type ballastless track. Construction quality, service performance and durability of CRTS ? ballastless structure are affected by stability of SCC for filling layer. In this study, the stability of SCC of filling layer is researched at three levels as paste, mortar and concrete by theory and experiment. Evaluation indices including bleeding (��), surface bubble rate (��), thickness of paste (��paste) and thickness of surface mortar (��) are proposed based on the theoretical calculation and analysis. The threshold viscosity of paste 0.394 Pa·s and mixture satisfied area are obtained at paste level based on the relationship between viscosity and ��, �� of paste. The mixture satisfied area was defined at mortar level under criterions of maximum value of ��paste and slump flow. Optimal range of gap between neighboring aggregates (��ca) 12.4 mm~14.1 mm is chosen by flow ability, passing ability, stable ability of SCC. These research results will help to further understand the stability of SCC.
Go to article

Authors and Affiliations

He Liu
1
ORCID: ORCID
Jingyi Zhang
2
ORCID: ORCID
Yanhai Yang
1
ORCID: ORCID

  1. Shenyang Jianzhu University, School of Transportation and Geometics Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  2. Shenyang Urban Construction University, School of Civil Engineering, No.380 Bai Ta Road, Hunnan District, 110167 Shenyang, China
Download PDF Download RIS Download Bibtex

Abstract

According to the requirements of green mine construction and the coordinated development of environmental protection regulations, the existing filling technologies in China are compared and analysed. Several types of technologies are discussed, including the dry filling technology for gangue, grouting and filling for separated strata zones in overburden, grouting and filling technology for caving gangue fissures, paste and paste-like filling, high-water and ultra-high-water filling, and continuous mining and continuous filling. Then, the characteristics of these individual technologies are analysed. Through the analysis and comparison of these technologies, considering the requirements of green mine construction and coordinated development of environmental protection regulations, it was found that continuous mining and continuous filling technology is a feasible mean for constructing green mines and protecting the environment. In this study, the application of continuous mining and continuous filling technology in the Yuxing coal mine is introduced. Results show that surface subsidence was less than 80 mm, and the recovery rate of the working face reached 95%. This indicates that continuous mining and continuous filling technology can solve the problems of surface subsidence, environmental damage, and coal resource waste. Finally, the development prospects of continuous mining and continuous filling technology are proposed, providing theoretical and technical support for similar mining.
Go to article

Bibliography

[1] J .H. Tan, Green Mine and the Policy Interpretation for Mine Safety Environmental Protection. Stone 01, 11-25 (2020). DOI: https://doi.org/10.14030/j.cnki.scaa.2020.0006 (in Chinese).
[2] L .M. Wang, MSc thesis, Study on Influence of Mining Size on Stability and Settlement Reduction Effect of Filling Pier Column. China University of Mining and Technology, Jiangsu, China (2019) (in Chinese).
[3] Y.D. Wang, MSc thesis, Study on Tax Planning of Coal Production Enterprises. China University of Mining and Technology, Jiangsu, China (2019) (in Chinese).
[4] X. Wu, B. Bai, Present Situation and Suggestions of Coal Filling Mining technology in Inner Mongolia Autonomous Region. Inner Mongolia Coal Economy 03, 51+79 (2019). DOI: https://doi.org/10.13487/j.cnki.imce.013617 (in Chinese).
[5] X. Zhou, PhD thesis, Study on Deterioration Mechanism and Modification of Mine Water Rich Filling. Beijing University of Science and Technology, Beijing, China (2018). (in Chinese).
[6] Z.M. Pei, Exploring of Modern Coal Mining Concept and Filling Mining. Technology and Market 24 (07), 447 (2017). DOI: https://doi.org/10.3969/j.issn.1006-8554.2017.07.268 (in Chinese).
[7] M.G Karfakis, C.H Bowman, E. Topuz, Characterization of Coal-mine Refuse as Backfilling Material. Geotechnical and Geological Engineering 14 (2), 129-150 (1996). DOI: https://doi.org/10.1007/BF00430273
[8] M.G Senyur, Fabric of Coal-mine Refuse as Backfilling Material and its Relation to Grain-size Distribution Parameters. Journal of the South African Institute of Mining and Metallurgy 98 (1), 39-48 (1998).
[9] H.J Siriwardane, R.S.S Kaman, P.F. Ziemkiewicz, Use of Waste Materials for Control of Acid Mine Drainage and Subsidence. Journal of Environmental Engineerin 129 (10), 910-915 (2003).
[10] C.Y. Si, MSc thesis, Evaluation of Green Mine Investment Efficiency in China, China University of Geosciences, Beijing, China (2017) (in Chinese).
[11] M.D. Zhao, PhD thesis, Experimental and Numerical Simulation Study on Overburden Temperature and Fracture of Underground Coal Gasification. China University of Mining and Technology, Beijing, China (2017) (in Chinese).
[12] Y. Liu, Y.M. Zhou, Y. Lu, H.Z. Guo, Experimental Study on Tailing Paste Filling Material Based on Regression Analysis. Safety in Coal Mine. 48 (03), 60-63 (2017). DOI: https://doi.org/10.13347/j.cnki.mkaq.2017.03.016 (in Chinese).
[13] D.L. Yang, PhD thesis, Research on Key Technology of Pneumatic Conveying and Filling by Drilling and Mining Method, China University of Mining and Technology, Jiangsui, China (2016) (in Chinese).
[14] Y.F. Zhang, Study on New Mining Technology and Mining Methods in Coal Mines. Heilongjiang Science and Technology Information 28, 42 (2016). DOI: https://doi.org/10.13939/j.cnki.zgsc.2016.36.066 (in Chinese).
[15] H.K. Yang, Application Research on Paste Filling Technology in Coal Mine. China Market Marketing 36, 66-68 (2016). DOI: https://doi.org/10.13939/j.cnki.zgsc.2016.36.066 (in Chinese).
[16] Y. Lu, Filling Technology and Development Prospect in Coal Mine. Inner Mongolia Coal Economy, 08, 23+29(2016). DOI: https://doi.org/10.13487/j.cnki.imce.007945 (in Chinese).
[17] Y.C. Wang, Z.P. Guo, C.X. Wang, J.X. Wang, Gas Filling Method Based on Paste Filling. Mining Research and Development 36 (02), 1-3(2016). DOI: https://doi.org/10.13827/j.cnki.kyyk.2016.02.001 (in Chinese).
[18] J .C. Shen, Discussion on Mining Technology with Paste Filling. Coal, 24 (08), 66-67+94 (2015). DOI: https://doi.org/10.3969/j.issn.1005-2798.2015.08.028 (in Chinese).
[19] D. Li, MSc thesis, Basic Research and Application of Long Wall Filling Mining in Xinyang Mine. Taiyuan University of Technology, Taiyuan, China (2015) (in Chinese).
[20] L . Niu, MSc thesis, Study on Physical and Mechanical Properties of Filling Body in Gangue Gypsum Filling Mining. Hebei University of Engineering, Hebei, China (2014) (in Chinese).
[21] J .S. Chen, MSc thesis, Mining Safety Technology of Complex Ore Body Under Water Dynamic Load. Central South University, Hunan, China (2010) (in Chinese).
[22] X.G. Zhang, W.J. Guo, H. Wang, Y.Y. Li, Z. Cao, Development of Safe Transportation Pressure Pre-alarm System of Coal Gangue Paste Backfilling Pipeline. Journal of China Coal Society 37 (S1), 229-233 (2012). DOI: https://doi.org/10.13225/j.cnki.jccs.2012.s1.041 (in Chinese).
[23] L . Wang, PhD thesis, Study on Strata Movement Mechanism and Deformation Prediction of Solid Dense Filling Mining. China University of Mining and Technology, Jiangsu, China (2012) (in Chinese).
[24] B .L. Ren, Research on the Future of the Underground Waste Rock Filling Mining in Hebei Province. Hebei Coal 05,13-15 (2011). DOI: https://doi.org/10.3969/j.issn.1007-1083.2011.05.007 (in Chinese).
[25] J .L. Sha, K. Hu, Study on the Necessity of Establishing the Mine Environmental Liability Insurance. China Mining Magazine 19 (S1), 111-113 (2010) (in Chinese).
[26] G .M. Feng, Y. Ding, H.J. Zhu, J.B. Bai, Experimental Research on Ultra High-water Packing Material for Mining and its Micro Morphology. Journal of China University of Mining and Technology 39 (06), 813-819 (2010) (in Chinese).
[27] N . Wang, H. Si. Filling Mined-out Area to Control Surface Subsidence. World Mining Express 3, 14-17(1999) (in Chinese).
[28] C.J. Shi, L. Robert. Day Acceleration of the Reactivity of Fly Ash by Chemical Activation. Cement and Concrete Research 25 (1), (1995).
[29] X.X. Miao, J.X. Zhang, G.L. Guo, Study on Waste-filling Method and Technology in Fully-mechanized Coal Mining. Journal of China Coal Society 35 (01), 1-6 (2010) (in Chinese).
[30] H.Z. Liu, PhD thesis, Quantitative Evaluation of Groundwater System Disturbance Caused by Coal Mining. China University of Mining and Technology, Jiangsu, China (2009) (in Chinese).
[31] G .M. Feng, PhD thesis, Research and Application of Ultra-high Water Filling Material and Filling Mining Technology. China University of Mining and Technology, Jiangsu, China (2009) (in Chinese).
[32] F. Cui, MSc thesis, Theoretical Research on Room Filling Mining in Yubujie Mine. General Institute of Coal Research, Beijing, China (2009) (in Chinese).
[33] Anon, Backfilling in German coal mines, Australian Mining 24, 80 (1988). [34] M. Yang, An Application of Dry Fill Stoping in Hetai Gold Mine. Mining Research and Development S1, 80- 82(1996) (in Chinese).
[35] J .F. Zha, PhD thesis, Research on Basic Problems of Subsidence Control in Gangue Filling Mining. China University of Mining and Technology, Jiangsu, China (2008) (in Chinese).
[36] X.S. Li, PhD thesis, Theoretical Study on Grouting Filling Settlement Reduction Technology in Caving Area Under Strip Mining Under Buildings. China University of Mining and Technology, Beijing, China (2008) (in Chinese).
[37] X.F. Liang, MSc thesis, Research on Safe Mining Technology of Industrial Coal Pillar Under Railway Bridge. Liaoning University of Engineering and Technology, Liaoning, China (2007) (in Chinese).
[38] T. Feng, J. Yuan, J.H. Liu, D.H. Xie, Research Progress and Development Trend of Mining Technology Under Building. Chinese Safety Science Journal 08, 119-123+3 (2006). DOI: https://doi.org/10.16265/j.cnki.issn1003-3033.2006.08.022 (in Chinese).
[39] J .L. Xu, M.G. Qian, H.W. Jin, Study and Application of Bed Separation Distribution and Development in the Process of Strata Movement. Chinese Journal of Geotechnical Engineering, 05, 632-636(2004). DOI: https://doi.org/10.3321/j.issn:1000-4548.2004.05.012 (in Chinese).
[40] J .X. Wang, T.Q. Liu, Feasibility Study on the Technology of Filling the Vacant Space of the Caving Rock With Cement Materials. Coal Mining Technology 01, 44-45+4 (2001). DOI: https://doi.org/10.3969/j.issn.1006-6225.2001.01.016 (in Chinese).
[41] J .R. Zheng, Solid Water Characteristics and Application of Hydrated Calcium Sulphoaluminate. Guangdong Building Materials 04, 11-12 (2000) (in Chinese).
[42] J .Z. Wang, J.R. Kang, L.X. Wu, Discussion on Mechanism and Application of Grouting in Separated-bed to Reduce Surface Subsidence Induced by Coal Mining. Journal of China University of Mining and Technology 04, 3-5 (1999). DOI: https://doi.org/10.3321/j.issn:1000-1964.1999.04.008 (in Chinese).
[43] W.B. Shi, Pumping and Filling Roadway Protection Technology in UK. Coal Science and Technology 01, 59- 60 (1986) (in Chinese).
[44] K .J. Jia, G.M. Feng, Backfill Mining Technology with Ultra High-water Material in Coal Mine and Outlook. Coal Science and Technology 40 (11), 6-9+23 (2012) (in Chinese).
[45] W.J. Guo, X.G. Zhang, J.W, Shi, Y.Y. Li, Present Situation of Research on Backfilling Mining Technology in Mines and Its Application Prospect. Journal of Shandong University of Science and Technology (Natural Science) 29 (04), 24-29 (2010). DOI: https://doi.org/10.3969/j.issn.1672-3767.2010.04.005 (in Chinese).
[46] S.H. Yan, H.X. Zhang, Status-quo of Filling Mining Technology in Coal Mines of China. Coal Mining Technology 03, 1-3, 10 (2008). DOI: https://doi.org/10.3969/j.issn.1006-6225.2008.03.001 (in Chinese).
[47] W.H. Sun, W. Zhu, X.B. Zheng, Application and Development Status of Technology of Grouting into Overburden Bed-separation to Reduce Ground Subsidence. Coal technology 02, 81-83 (2008) (in Chinese).
[48] L .P. Liu, Research and Application of Continuous Mining and Continuous Filling Green Mining Technology on Ground Deformation. China Coal Industry 08, 60-61 (2019). DOI: https://doi.org/10.3969/j.issn.1673-9612.2019.08.025 (in Chinese).
Go to article

Authors and Affiliations

Dongmei Huang
1 2
ORCID: ORCID
Daqian Xing
1 2
ORCID: ORCID
Xikun Chang
1 3
ORCID: ORCID
Yingying Zhu
1 2
ORCID: ORCID
Chunjing Gao
1 2
ORCID: ORCID

  1. Shandong University of Science and Technology, State Key Laborat ory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Qingdao 266590, China
  2. Shandong University of Science and Technology, College of Safety and Environmental Engineering, Qingdao 266590, China
  3. Shandong University of Science and Technology, College of Energy and Mining Engineering, Qingdao 266590, China
Download PDF Download RIS Download Bibtex

Abstract

Stability control of the roof is the key to safe and efficient mining of the longwall working face for a steeply dipping coal seam. In this study, a comprehensive analysis was performed on the roof destruction, migration, and filling characteristics of a steeply dipping longwall working face in an actual coalmine. Elastic foundation theory was used to construct a roof mechanics model; the effect of the coal seam inclination angle on the asymmetric deformation and failure of the roof under the constraint of an unbalanced gangue filling was considered. According to the model, increasing the coal seam angle, thickness of the immediate roof, and length of the working face as well as decreasing the thickness of the coal seam can increase the length of the contact area formed by the caving gangue in the lower area of the slope. Changes to the length of the contact area affect the forces and boundary conditions of the main roof. Increasing the coal seam angle reduces the deformation of the main roof, and the position of peak deflection migrates from the middle of the working face to the upper middle. Meanwhile, the position of the peak rotation angle migrates from the lower area of the working face to the upper area. The peak bending moment decreases continuously, and its position migrates from the headgate T-junction to the tailgate T-junction and then the middle of the working face. Field test results verified the rationality of the mechanics model. These findings reveal the effect of the inclination coal seam angle on roof deformation and failure and provide theoretical guidance for engineering practice.
Go to article

Bibliography

[1] Y.P. Wu, D.F Yun, P.S. Xie et al., Progress, practice and scientific issues in steeply dipping coal seams fullymechanized mining. J. China Coal Soc. 45 (01):24-34 (2020) (in Chinese).
[2]. Y.P. Wu, B.S. Hu, D Lang et al., Risk assessment approach for rockfall hazards in steeply dipping coal seams. Int. J. Rock Mech. Min. Sci. 138, 104626 (2021). doi: 10.1016/j.ijrmms.2021.104626
[3] D .Y. Zhu, W.L. Gong, Y. Su et al., Application of High-Strength Lightweight Concrete in Gob-Side Entry Retaining in Inclined Coal Seam. Advances in Materials Science and Engineering (2020). doi: 10.1155/2020/8167038
[4] H .W. Wang, Y.P. Wu, J.Q. Jiao et al., Stability Mechanism and Control Technology for Fully Mechanized Caving Mining of Steeply Inclined Extra-Thick Seams with Variable Angles. Mining, Metall. Explor. (2020). doi: 10.1007/ s42461-020-00360-0
[5] R .A. Frumkin, Predicting rock behaviour in steep seam faces (in Russian). International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 20 (1), A12-A13 (1983). doi: 10.1016/0148-9062(83)91717-5
[6] A. Ladenko, Improvements in working steep seams. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 11 (12), 247. (1974). doi: 10.1016/0148-9062(74)92108-1
[7] Z. Rak, J. Stasica, Z. Burtan et al., Technical aspects of mining rate improvement in steeply inclined coal seams: A case study. Resources 9 (12), 1-16 (2020). doi: 10.3390/resources9120138
[8] H .S. Tu, S.H. Tu, C. Zhang et al., Characteristics of the Roof Behaviours and mine pressure manifestations during the mining of steep coal seam. Arch. Min. Sci. 62 (4), 871-890 (2020).
[9] P .S. Xie, Y.P. Wu, Deformation and failure mechanisms and support structure technologies for goaf-side entries in steep multiple seam mining disturbances. Arch. Min. Sci. 64 (3), 561-574 (2019). doi: 10.24425/ams.2019.129369
[10] Z.Y.Wang, L.M. Dou, J. He et al., Experimental investigation for dynamic instability of coal-rock masses in horizontal section mining of steeply inclined coal seams. Arabian Journal of Geosciences 13, 15 (2020). doi: 10.1007/ s12517-020-05753-5
[11] P .S. Xie, Y. Luo, Y.P. Wu et al., Roof Deformation Associated with Mining of Two Panels in Steeply Dipping Coal Seam Using Subsurface Subsidence Prediction Model and Physical Simulation Experiment. Mining, Metall. Explor. 37 (2), 581-591 (2020). doi: 10.1007/s42461-019-00156-x
[12] X.P. Lai, H. Sun, P.F. Shan et al., Structure instability forecasting and analysis of giant rock pillars in steeply dipping thick coal seams. Int. J. Miner. Metall. Mater. 22 (12), 1233-1244 (2015). doi: 10.1007/s12613-015-1190-z
[13] Y.P. Wu, B.S. Hu, P.S. Xie, A New Experimental System for Quantifying the Multidimensional Loads on an on-Site Hydraulic Support in Steeply Dipping Seam Mining. Exp. Tech. 43 (5), 571-585 (2019). doi: 10.1007/s40799-019- 00304-4
[14] Y.D. Zhang, J.Y. Cheng, X.X. Wang et al., Thin plate model analysis on roof break of up-dip or down-dip mining stope. J. Min. Saf. Eng. 27 (4), 487 (2010) (in Chinese).
[15] J.R. Cao, L.M. Dou, G.A. Zhu et al., Mechanisms of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam and Prevention Technology. Energies 13 (22), 6043 (2020). doi: 10.3390/en13226043
[16] H .W. Wang, Y.P. Wu, M. Liu et al., Roof-breaking mechanism and stress-evolution characteristics in partial backfill mining of steeply inclined seams. Geomatics, Natural Hazards and Risk 11 (1), 2006-2035 (2020). doi: 10.1080/1 9475705.2020.1823491
[17] S.R. Islavath, D. Deb, H. Kumar, Numerical analysis of a longwall mining cycle and development of a composite longwall index. Int. J. Rock Mech. Min. Sci. 89, 43-54 (2016).
[18] H . Basarir, O.I. Ferid, O. Aydin, Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis. Int. J. Rock Mech. Min. Sci. 76, 88-97 (2015). doi: 10.1016/j.ijrmms.2015.03.001
[19] J.A. Wang, J.L. Jiao, Criteria of support stability in mining of steeply inclined thick coal seam. Int. J. Rock Mech. Min. Sci. 82, 22-35 (2016). doi: 10.1016/j.ijrmms.2015.11.008
[20] W.Y. Lv, Y.P. Wu, M. Liu et al., Migration law of the roof of a composited backfilling longwall face in a steeply dipping coal seam. Minerals 9 (3) (2019). doi: 10.3390/min9030188
[21] C.F. Huang, Q. Li, S.G.Tian, Research on prediction of residual deformation in goaf of steeply inclined extra- thick coal seam. PLoS ONE 15, 1-14 (2020). doi: 10.1371/journal.pone.0240428
[22] Y.C. Yin, J.C. Zou, Y.B. Zhang et al., Experimental study of the movement of backfilling gangues for goaf in steeply inclined coal seams. Arabian Journal of Geosciences 11 (12) (2018). doi: 10.1007/s12517-018-3686-0
[23] G .S.P Singh, U.K. Singh, Prediction of caving behavior of strata and optimum rating of hydraulic powered support for longwall workings. Int. J. Rock Mech. Min. Sci. 47, 1-16 (2010).
[24] P .S. Xie, Y.Y. Zhang, S.H. Luo et al., Instability Mechanism of a Multi-Layer Gangue Roof and Determination of Support Resistance Under Inclination and Gravity. Mining, Metall. Explor. 37 (5), 1487-1498 (2020). doi: 10.1007/ s42461-020-00252-3
[25] G .J. Wu, W.D. Chen, S.P. Jia et al., Deformation characteristics of a roadway in steeply inclined formations and its improved support. Int. J. Rock Mech. Min. Sci. 130, 104324 (2020). doi: 10.1016/j.ijrmms.2020.104324
[26] Y.Q. Long, Numerical computation of beam on elastic foundation. People’s Education Press, Beijing (1981).

Go to article

Authors and Affiliations

Shenghu Luo
1
ORCID: ORCID
Tong Wang
2
ORCID: ORCID
Yongping Wu
2
ORCID: ORCID
Jingyu Huangfu
2
ORCID: ORCID
Huatao Zhao
3
ORCID: ORCID

  1. Xi’an University of Science and Technology, Department of Mechanics, China
  2. Xi’an University of Science and Technology, School of Energy Engineering, China
  3. Shandong Mining Machinery Group Co., Ltd. China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a thermodynamic analysis of the removal of an inert gas from the tank using the vapor of liquefied petroleum gas cargo (called cargo tank gassing-up operation). For this purpose a thermodynamic model was created which considers two extreme cases of this process. The first is ‘piston pushing’ of inert gas using liquefied petroleum gas vapour. The second case is the complete mixing of both gases and removal the mixture from the tank to the atmosphere until desired concentration or amount of liquefied petroleum gas cargo in the tank is reached. On the example of nitrogen as inert gas and ethylene as a cargo, by thermodynamic analysis an attempt was made to determine the technical parameters of the process, i.e., pressure in the tank, temperature, time at which the operation would be carried out in an optimal way, minimizing the loss of cargo used for gassingup. Calculations made it possible to determine the amount of ethylene used to complete the operation and its loss incurred as a result of total mixing of both gases.
Go to article

Authors and Affiliations

Agnieszka Wieczorek
1

  1. Gdynia Maritime University, Morska 81–87, 81-225 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

Every change in the bottle geometry aswell as every change of physical and rheological properties poses a risk of excessive gas entrainment during a filling process. To maintain satisfactory filling efficiency there is a need to optimise this process with respect to all adverse phenomena which affect the fluid flow, such as spluttering on the bottom, air caverns formation and air entrainment with incoming liquid. This paper comprises numerical simulations of two filling methods. The first method involves dosing with a pipe placed over the free liquid surface of a fully filled bottle. The second method covers filling with a pipe located near the bottom. Moreover, the influence of rheological properties and surface tension values is considered. The comprehensive analysis of amount of entrained air represented by air volume fraction in dispensed liquid let the authors define the influence of filling speed on the mechanism and amount of entrapped air.

Go to article

Authors and Affiliations

Monika Jałowiecka
Łukasz Makowski
Download PDF Download RIS Download Bibtex

Abstract

Tensile strength of aluminum castings has been improved by employing surge and filter in a conventional non-pressurizing gating system. For this purpose, three non-pressurizing bottom-gating systems were designed where the first design was a simple design with no filter and no surge, in the second design filter and in the third one surge was added to the end of runner. Tensile strength, Weibull module, scanning electron microscopy, chemical analysis, and melt pattern during the mold filling were thoroughly analyzed to compare these three designs. It was observed that employing filter and surge in the gating system reduces flow kinetic energy and consequently avoid surface turbulence and air entrainment, which leads to castings with fewer defects and higher reliabilities. Finally, it found that appropriate use of surge in the running system can be as effective as employing a filter in reducing melt front velocity.
Go to article

Authors and Affiliations

Amir Baghani
1
Ali Kheirabi
2
Ahmad Bahmani
3
Hamid Khalilpour
4

  1. University of Iowa Department of Mechanical Engineering, Iowa City, IA, USA
  2. Iran University of Science and Technology School of Metallurgy and Materials Engineering, Tehran, Iran
  3. University of Tehran Department of Metallurgical and Materials Engineering, Iran
  4. Laval University, Department of Mining, Metallurgical and Materials Engineering, Québec, Canada
Download PDF Download RIS Download Bibtex

Abstract

Aiming to address power consumption issues of various equipment in metro stations and the inefficiency of peak shaving and valley filling in the power supply system, this study presents an economic optimization scheduling method for the multi-modal “source-network-load-storage” system in metro stations. The proposed method, called the Improved Gray Wolf Optimization Algorithm (IGWO), utilizes objective evaluation criteria to achieve economic optimization. First, construct a mathematical model of the “sourcenetwork- load-storage” joint system with the metro station at its core. This model should consider the electricity consumption within the station. Secondly, a two-layer optimal scheduling model is established, with the upper model aiming to optimize peak elimination and valley filling, and the lower model aiming to minimize electricity consumption costs within a scheduling cycle. Finally, this paper introduces the IGWO optimization approach, which utilizes meta-models and the Improved Gray Wolf Optimization Algorithm to address the nonlinearity and computational complexity of the two-layer model. The analysis shows that the proposed model and algorithm can improve the solution speed and minimize the cost of electricity used by about 5.5% to 8.7% on the one hand, and on the other hand, it improves the solution accuracy, and at the same time effectively realizes the peak shaving and valley filling, which provides a proof of the effectiveness and feasibility of the new method.
Go to article

Authors and Affiliations

Jingjing Tian
1
Yu Qian
1
Feng Zhao
1 2
Shenglin Mo
1
Huaxuan Xiao
1
Xiaotong Zhu
1
Guangdi Liu
1

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University Lanzhou, China
  2. Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education Lanzhou, China
Download PDF Download RIS Download Bibtex

Abstract

In order to study the mechanical behavior of concrete-filled steel tube(CFST) short column with different void ratios under a certain eccentricity. A fiber model of concrete-filled steel tube section with different void heights was established. Compared with existing model test data, the axial force and flexural moment strength models of concrete-filled steel tube columns with different void ratios were established. The results show that, in the case of different void ratios, the cross-section strength envelope shows an overall contraction tendency with the increase of void ratio, and each line is basically parallel. A model for calculating the coefficient of axial load degradation was established. The Han’s flexural moment strength model of the flexural component was revised, and the strength model of concrete-filled steel tube column under eccentric compression considering void ratio was established, which provides a theoretical basis and method for the safety assessment during the operation of concrete-filled steel tube arch bridges.
Go to article

Authors and Affiliations

Junxi Song
1
ORCID: ORCID
Zhuowei Han
2
ORCID: ORCID
Dawei Wang
2
ORCID: ORCID
Xiaorui Lu
2
ORCID: ORCID

  1. CCCC Fourth Highway Engineering Co.Ltd, Beijing 100176, China
  2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China
Download PDF Download RIS Download Bibtex

Abstract

Concrete-filled hollow steel (CFHS) has become more popular due to its advantages and benefits compared to reinforced concrete. This paper presents the experimental investigation on the performance of rubberized pozzolanic concrete-filled hollowsteel column (RuPCFHS) under monotonic and cyclic lateral load in comparison to bare hollow steel column and normal concrete-filled hollow steel column (NCFHS). The test parameters included the type of concrete infill and the level of axial load. Modified rubberized pozzolanic concrete with comparable compressive strength to that of normal concrete was used. Two types of axial load conditions: no axial load and 20% axial load were considered in the testing. The test results indicate that the performance of the columns improved when concrete infill was introduced in the hollow steel. The application of axial loading also increased the capacity of the column specimens. RuPCFHS behaved with comparable performance with NCFHS in both monotonic and cyclic testing. RuPCFHS recorded the highest increment in the energy dissipation capability when 20% axial load was applied to the column when compared to the other specimens. The comparable performance indicated the possibility ofRuPC as an infill material of CFHS andRuPCFHS as a structural component.
Go to article

Authors and Affiliations

Muhammad Najmi Mohamad Ali Mastor
1
ORCID: ORCID
Mariyana Aida Ab Kadir
2 3
ORCID: ORCID
Nurizaty Zuhan
2
ORCID: ORCID
Kasali Adebayo Mujedu
1
ORCID: ORCID
Mohd Zamri Ramli
4
ORCID: ORCID
Ramadhansyah Putra Jaya
5
ORCID: ORCID
Norhazilan Md Noor
2
ORCID: ORCID
Mohamad Syazwan Ahmad Shah
2
ORCID: ORCID

  1. Candidate, School of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
  2. School of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
  3. Institute of Noise and Vibration, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
  4. Candidate, School of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor,Malaysia
  5. Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

Concrete-filled steel tube arch bridge is filled with concrete inside the steel tube. The radial constraint of the steel tube limits the expansion of the compression concrete, which makes the concrete in the three-way compression state, thus significantly improving the compressive strength of the concrete. At the same time, it can simplify the construction process and shorten the construction period. Since the rapid development of concretefilled steel tubular tied arch bridge in the 1990s, a large number of such Bridges have suffered from the defects of steel concrete, loose tie rod, and hanger rod rust, etc. Therefore, the reinforcement technology for various diseases has been studied, among which the reinforcement technology for hanger rod replacement is the most complicated and more difficult. As more and more bridges of this type enter the period of reinforcement, it ismore and more urgent to study the reinforcement technology of suspenders. Taking a bridge that has been in service for 23 years as an example, this paper discusses the construction method and construction monitoring of replacing the suspender, so as to guide the construction monitoring of the bridge. Finally, the construction monitoring results of the bridge are given, which can provide reference for the replacement of the suspender of this type of bridge.
Go to article

Authors and Affiliations

Kexin X. Zhang
1
ORCID: ORCID
Tianyu Y. Qi
2
ORCID: ORCID
Xingwei W. Xue
1
ORCID: ORCID
Yanfeng F. Li
1
ORCID: ORCID
Zhimin M. Zhu
3
ORCID: ORCID

  1. PhD., Eng., Shenyang Jianzhu University, School of Traffic Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  2. Master Degree Candidate, Shenyang Jianzhu University, School of Traffic Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  3. Master, Liaoning Urban Construction Design Institute Co. LTD, Shenyang, No.77-1 Jinfeng Street, Shenyang, China
Download PDF Download RIS Download Bibtex

Abstract

The normal mode solution for the form function and target strength (TS) of a solid-filled spherical shell is derived. The calculation results of the spherical shell’s acoustic TS are in good agreement with the results of the finite element method (FEM). Based on these normal mode solutions, the influences of parameters such as the material, radius, and thickness of the inner and outer shells on the TS of a solid-filled spherical shell are analyzed. An underwater spherical shell scatterer is designed, which uses room temperature vulcanized (RTV) silicone rubber as a solid filling material and does not contain a suspension structure inside. The scatterer has a good TS enhancement effect.
Go to article

Authors and Affiliations

Bing Jia
1 2
Jun Fan
1
Gui-Juan Li
2
Bin Wang
1
ORCID: ORCID
Yun-Fei Chen
2

  1. Key Laboratory of Marine Intelligent Equipment and System Ministry of Education Shanghai Jiao Tong University
  2. Science and Technology on Underwater Test and Control Laboratory Dalian, Liaoning, China
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this study is to highlight the performance of beams composed of lightweight concretefilled steel tubes (square and circle sections) composite with reinforced concrete deck slab. A total of nine composite beams were tested included two circular and seven square concrete-filled steel tubes. Among the nine composite beams, one beam, S20-0-2000, was prepared without a deck slab to act as a reference specimen. The chief parameters investigated were the length of the specimen, the compressive strength of the concrete slab, and the effect of the steel tube section type. All beams were tested using the three-point bending test with a concentrated central point load and simple supports. The test results showed that the first crack in the concrete deck slab was recorded at load levels ranging from 50.9% to 77.2% of the ultimate load for composite beams with square steel tubes. The ultimate load increased with increasing the compressive strength of the concrete slab. Shorter specimens were more stiffness than the other specimens but were less ductile. The slip values were equal to zero until the loads reached their final stages, while the specimen S20-55-1100 (short specimen) exhibited zero slip at all stages of the load. The ultimate load of the hollow steel tube composite beam was 13.2% lower than that of the reference beam. Moreover, the ductility and stiffness of the beam were also higher for beams with composite-filled steel tubes.

Go to article

Authors and Affiliations

Khawala A. Farhan
Muhaned A. Shallal
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a review of composite structures in which aluminium alloys are used. Current trends in the research of composite structures with aluminium girders and their possible applications in structural engineering were shown. In the presented solutions, advantageous properties of aluminium alloys were exploited, such as high strength-to-weight ratio, corrosion resistance and recyclability. The authors demonstrated the structural behaviour of aluminium-concrete and aluminiumtimber composite beams based on their own tests as well as investigations presented in the literature. Furthermore, aluminium-concrete composite columns, a composite mullion made of an aluminium alloy and timber, and a military bridge consisting of aluminium truss components, a stay-in-place-form, reinforcement and concrete were presented. In addition to the description of the structural elements, the main conclusions from their experimental, theoretical and numerical analyses were also demonstrated in this paper. The connection of aluminium girders with concrete or timber slabs provided for the increase of the load-bearing capacity and stiffness, and it eliminated the problem of local buckling in girder flanges and lateral-torsional buckling of girders in the analysed solutions.
Go to article

Authors and Affiliations

Marcin Chybiński
1
ORCID: ORCID
Łukasz Polus
1
ORCID: ORCID
Maciej Szumigała
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 5 Street, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The concrete-filled section of columns has been widely in construction used due to its structural elements. As a result, the usage of composite columns has recently increased all over the world. However, using foamed concrete alone does not result in much improvements in strength. Therefore, this paper examines the use of foamed concrete containing fibre to improve the strength of composite columns. Specifically, this study aims to determine the bond strength of concrete-filled hollow section (CFHS) with modified fibrous foamed concrete. Two types of fibre are used in this work, namely, steel fibre and polypropylene fibre, with rice husk ash (RHA) as a sand replacement to improve the compressive strength of foamed concrete. The CFHS with modified fibrous foamed concrete is tested by using the push-out method, and the results show that CFHS with steel fibre has a highest bond strength.

Go to article

Authors and Affiliations

S.A.A. Khairuddin
N.A. Rahman
N. Jamaluddin
Z.M. Jaini
A. Elamin
R.H.M. Rum

This page uses 'cookies'. Learn more