Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Filter bank multicarrier waveform is investigated as a potential waveform for visible light communication broadcasting systems. Imaginary inter-carrier and/or inter-symbol interference are causing substantial performance degradation in the filter bank multicarrier system. Direct current-biased optical filter bank multicarrier modulation overcomes all the problems of direct current-biased optical-orthogonal frequency division multiplexing modulation approaches in terms of speed and bandwidth. However, it also wastes a lot of energy while transforming a true bipolar signal into a positive unipolar signal by adding direct current-bias. In this paper, a flip-filter bank multicarrier-based visible light communication system was introduced to overcome this problem. In this system, a bipolar signal is converted to a unipolar signal by isolating the positive and negative parts, turning them to positive and then delivering the signal. Also, a new channel estimation scheme for a flip-filter bank multicarrier system is proposed which improves the channel estimation performance compared to that of each of the conventional schemes. The proposed system performance is measured in terms of bit error rate, normalized mean squared error, and constellation diagram. The superiority of the proposed scheme over other conventional structures has been successfully verified by MATLAB 2020b simulation experiments results. These results are evaluated under indoor visible light communication standard.
Go to article

Bibliography

  1. Kumar, S. & Singh, P. Filter bank multicarrier modulation schemes for visible light communication. Pers. Commun. 113, 2709–2722 (2020). https://doi.org/10.1007/s11277-020-07347-6
  2. Wang, J. Y. et al. Performance analysis and improvement for secure vlc with slipt and random terminals. IEEE Access 8, 73645–73658 (2020). https://doi.org/10.1109/ACCESS.2020.2988470
  3. Chen, R. et al. Visible light communication using DC-biased optical filter bank multi-carrier modulation. in 2018 Global LIFI Congress (GLC) 1–6 (2018). https://doi.org/10.23919/GLC.2018.8319094
  4. Al Hammadi, A., Sofotasios, P. C., Muhaidat, S., Al-Qutayri, M. & Elgala, H. Non-orthogonal multiple access for hybrid VLC-RF networks with imperfect channel state information. IEEE Trans. Veh. Technol. 70, 398–411 (2021). https://doi.org/10.1109/TVT.2020.3044837
  5. Tanaka, Y., Komine, T., Haruyama, S. & Nakagawa, M. Indoor visible communication utilizing plural white LEDs as lighting. in 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) F81–F85 (2001). https://doi.org/10.1109/PIMRC.2001.965300
  6. Mohammed, N. A., Elnabawy, M. M. & Khalaf, A. A. M. PAPR reduction using a combination between precoding andnon-linear companding techniques foraco-ofdm-based VLC systems. Opto-Electron. Rev. 29, 59–70 (2021). https://doi.org/10.24425/opelre.2021.135829
  7. Qasim, A. A., Abdullah, M. F. L. & Talib, R. Adaptive DCO-FBMC in visible light communication. in IOP Conferene: Material Science and Engineering 812018 (2020). https://doi.org/10.1088/1757-899X/767/1/012018
  8. Kumar, S. & Singh, P. Spectral efficient asymmetrically clipped hybrid FBMC for visible light communication. J. Opt. 2021, (2021). https://doi.org/10.1155/2021/8897928
  9. Abouldahab, M. A., Fouad, M. M. & Roshdy, R. A. A proposed preamble based channel estimation method for FBMC in 5G wireless channels. in 35th IEEE National Radio Science Confernce (NRSC) 140–148 (2018). https://doi.org/10.1109/NRSC.2018.8354382
  10. Roshdy, R. A., Aboul-Dahab, M. A. & Fouad, M. M. A modified interference approximation scheme for improving preamble based channel estimation performance in FBMC system. J. Comput. Networks Commun. 12, 19–35 (2020). https://doi.org/10.5121/ijcnc.2020.12102
  11. Sun, J. et al. Channel estimation approach with low pilot overhead in FBMC/OQAM Systems. Commun. Mob. Comput. 2021, 5533399 (2021). https://doi.org/10.1155/2021/5533399
  12. Liu, W., Schwarz, S., Rupp, M. & Jiang, T. Pairs of pilots design for preamble-based channel estimation in OQAM/FBMC systems. IEEE Wirel. Commun. Lett. 10, 488–492 (2021). https://doi.org/10.1109/lwc.2020.3035388
  13. El-Ganiny, M. Y., Klialaf, A. A. M., Hussein, A. I. & Hamed, H. F. A. A preamble based channel estimation methods for FBMC waveform: A comparative study. Procedia Comput. Sci. 182, 63–70 (2020). https://doi.org/10.1016/j.procs.2021.02.009
  14. Kong, D. et al. Preamble-based MMSE channel estimation with low pilot overhead in MIMO-FBMC systems. IEEE Access 8, 148926–148934 (2020). https://doi.org/10.1109/ACCESS.2020.3015809
  15. Hu, S. et al. Training sequence design for efficient channel estimation in MIMO-FBMC systems. IEEE Access 5, 4747–4758 (2017). https://doi.org/10.1109/ACCESS.2017.2688399
  16. Wang, H. Sparse channel estimation for MIMO-FBMC/OQAM wireless communications in smart city applications. IEEE Access 6, 60666–60672 (2018). https://doi.org/10.1109/ACCESS.2018.2875245
  17. Lélé, C., Javaudin, J. P., Legouable, R., Skrzypczak, A. & Siohan, P. Channel estimation methods for preamble-based OFDM/OQAM modulations. Trans. Telecommun. 19, 741–750 (2008). https://doi.org/10.1002/ett.1332
  18. Du, J. & Signell, S. Novel preamble-based channel estimation for OFDM / OQAM systems. in 2009 IEEE International Conference on Communications 1–6 (2009). https://doi.org/10.1109/ICC.2009.5199226
  19. Kofidis, E. & Katselis, D. Improved interference approximation method for preamble-based channel estimation in FBMC/OQAM. in European Signal Processing Conference 1603–1607 (2011). https://doi.org/10.5281/zenodo.42712
  20. Wang, H., Du, W. & Xu, L. Novel preamble design for channel estimation in FBMC/OQAM systems. KSII Trans. Internet Inf. Syst. 10, 3672–3688 (2016). https://doi.org/10.3837/tiis.2016.08.014
  21. Kashani, M. A. & Kavehrad, M. On the performance of single- and multi-carrie modulation schemes for indoor visible light communication systems. in 2014 IEEE Global Communications Conference (GLOBECOM) 2084–2089 (2014). https://doi.org/10.1109/GLOCOM.2014.7037115
  22. Rehman, S. U., Ullah, S., Chong, P. H. J., Yongchareon, S. & Komosny, D. Visible light communication: A system perspective—Overview and challenges. Sensors 19, 1153 (2019). https://doi.org/10.3390/s19051153
  23. Al-Ahmadi, S., Maraqa, O., Uysal, M. & Sait, S. M. Multi-user visible light communications: State-of-the-art and future directions. IEEE Access 6, 70555–70571 (2018). https://doi.org/10.1109/ACCESS.2018.2879885
  24. Shalaby, E. M., Dessouky, M. & Hussin, S. Performance evaluation of UFMC-based VLC systems using a modified SLM technique. Opto-Electron. Rev. 29, 85–90 (2021). https://doi.org/10.24425/opelre.2021.135832
  25. Hussin, S. & Shalaby, E. M. Performance analysis of DFT-S-OFDM waveform for Li-Fi systems. Opto-Electron. Rev. 29, 167–174 (2021). https://doi.org/10.24425/opelre.2021.139753
  26. Qasim, A. A., Mohammedali, H. N., Abdullah, M. F. L., Talib, R. & Dhaam, H. Z. Enhanced Flip-FBMC visible light communication model. J. Electr. Eng. Comput. Sci. 23, 1783–1793 (2021). https://doi.org/10.11591/ijeecs.v23.i3.pp1783-1793
  27. Elgala, H., Mesleh, R., Haas, H. & Pricope, B. OFDM visible light wireless communication based on white LEDs. in IEEE Vehicular Technology Conference (VTC) 2185–2189 (2007) https://doi.org/10.1109/VETECS.2007.451
  28. Yesilkaya, A., Karatalay, O., Ogrenci, A. S. & Panayirci, E. Channel estimation for visible light communications using neural networks. in International Joint Conference on Neural Networks (IJCNN) 320–325 (2016). https://doi.org/10.1109/IJCNN.2016.7727215
Go to article

Authors and Affiliations

Mohamed Y. El-Ganiny
1
Ashraf A. M. Khalaf
2
ORCID: ORCID
Aziza I. Hussein
3
ORCID: ORCID
Hesham F. A. Hamed
4

  1. Department of Electrical Engineering, Higher Technological Institute, 10th of Ramadan City, Sharqia, Egypt
  2. Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia, Egypt
  3. Electrical and Computer Engineering Department, Effat University, Jeddah, Kingdom of Saudi Arabia
  4. Department of Telecommunications Engineering, Egyptian Russian University, Badr City, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Visible light communication based on a filter bank multicarrier holds enormous promise for optical wireless communication systems, due to its high-speed and unlicensed spectrum. Moreover, visible light communication techniques greatly impact communication links for small satellites like cube satellites, and pico/nano satellites, in addition to inter-satellite communications between different satellite types in different orbits. However, the transmitted visible signal via the filter bank multicarrier has a high amount of peak-to-average power ratio, which results in severe distortion for a light emitting diode output. In this work, a scheme for enhancing the peak-to-average power ratio reduction amount is proposed. First, an algorithm based on generating two candidates signals with different peak-to-average power ratio is suggested. The signal with the lowest ratio is selected and transmitted. Second, an alternate direct current-biased approach, which is referred to as the addition reversed method, is put forth to transform transmitted signal bipolar values into actual unipolar ones. The performance is assessed through a cumulative distribution function of peak-to-average power ratio, bit error rate, power spectral density, and computational complexity. The simulation results show that, compared to other schemes in literature, the proposed scheme attains a great peak-to-average power ratio reduction and improves the bit the error rate performance with minimum complexity overhead. The proposed approach achieved about 5 dB reduction amount compared to companding technique, 5.5 dB compared to discrete cosine transform precoding, and 8 dB compared to conventional direct current bias of an optical filter bank multicarrier. Thus, the proposed scheme reduces the complexity overhead by 15.7% and 55.55% over discrete cosine transform and companding techniques, respectively.
Go to article

Authors and Affiliations

Radwa A. Roshdy
1
ORCID: ORCID
Aziza I. Hussein
2
ORCID: ORCID
Mohamed M. Mabrook
3 4
ORCID: ORCID
Mohammed A. Salem
ORCID: ORCID

  1. Department of Electrical Engineering, Higher Technological Institute, 10th of Ramadan City, Egypt
  2. Electrical & Computer Eng. Dept., Effat University, Jeddah, Saudi Arabia
  3. Space Communication Dept., Faculty of Navigation Science & Space Technology, Beni-Suef University, Beni-Suef, Egypt
  4. Department of Communication and Computer Engineering, Faculty of Engineering, Nahda University in Beni-Suef, Egypt

This page uses 'cookies'. Learn more