Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 25
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Evaluation of moisture absorption in foodstuffs such as black chickpea is an important stage for skinning and cropping practices. Water uptake process of black chickpea was discussed through normal soaking in four temperature levels of 20, 35, 50 and 65 °C for 18 hours, and then the hydration kinetics was predicted by Peleg’s model and finite difference strategy. Model results showed that with increasing soaking temperature from 20 to 65 °C, Peleg’s rate and Peleg’s capacity constant reduced from 13.368×10-2 to 5.664×10-2 and 9.231×10-3 to 9.138×10-3, respectively. Based on key results, a rise in the medium temperature caused an increase in the diffusion coefficient from 5.24×10-10 m2/s to 4.36×10-9 m2/s, as well. Modelling of moisture absorption of black chickpea was also performed employing finite difference strategy. Comparing the experimental results with those obtained from the analytical solution of the theoretical models revealed a good agreement between predicted and experimental data. Peleg’s model and finite difference technique revealed their predictive function the best at the temperature of 65 °C.

Go to article

Authors and Affiliations

Nesa Dibagar
Stefan Jan Kowalski
Reza Amiri Chayjan
Download PDF Download RIS Download Bibtex

Abstract

This paper presents novel discrete differential operators for periodic functions of one- and two-variables, which relate the values of the derivatives to the values of the function itself for a set of arbitrarily chosen points over the function’s area. It is very characteristic, that the values of the derivatives at each point depend on the function values at all points in that area. Such operators allow one to easily create finite-difference equations for boundaryvalue problems. The operators are addressed especially to nonlinear differential equations.
Go to article

Bibliography

[1] Richtmayer R.D., Morton K.W., Difference methods for initial-value problems, J.Willey & Sons, New York (1967).
[2] Burden R.L., Faires J.D., Numerical analysis, PWS-Kent Pub. Comp., Boston (1985).
[3] Taflove A., Computational electrodynamics: the finite-difference time-domain method, Artech House, Boston – London (1995).
[4] Strikwerda J.C., Finite Difference Schemes and Partial Differential Equations, Society for Industrial and Applied Mathematics, Second Edition, Philadelphia (2004).
[5] LeVeque R.J., Finite difference methods for ordinary and partial differential equations, Society for Industrial and Applied Mathematics, Second Edition, Philadelphia (2007).
[6] Fortuna Z., Macukow B., Wasowski J., Numerical methods, WNT (in Polish), Warsaw (2009).
[7] Esfandiari R.S., Numerical Methods for Engineers and Scientists Using MATLABr, CRC Press, Taylor & Francis Group (2017).
[8] Zakrzewski K., Łukaniszyn M., Application of 3-D finite difference method for inductance calculation of air-core coils system, COMPEL International Journal of Computations and Mathematics in Electrical Engineering, vol. 13, no. 1, pp. 89–92 (1994).
[9] Demenko A., Sykulski J., On the equivalence of finite difference and edge element formulations in magnetic field analysis using vector potential, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33, no. 1/2, pp. 47–55 (2014).
[10] Huang J., LiaoW., Li Z., A multi-block finite difference method for seismic wave equation in auxiliary coordinate system with irregular fluid–solid interface, Engineering Computations, vol. 35, no. 1, pp. 334–362 (2018).
[11] Chapwanya M., Dozva R., Gift Muchatibaya G., A nonstandard finite difference technique for singular Lane-Emden type equations, Engineering Computations, vol. 36, no. 5, pp. 1566–1578 (2019).
[12] Mawlood M., Basri S., AsrarW., Omar A., Mokhtar A., Ahmad M., Solution of Navier-Stokes equations by fourth-order compact schemes and AUSM flux splitting, International Journal of Numerical Methods for Heat and Fluid Flow, vol. 16, no. 1, pp. 107–120 (2006).
[13] Ivanovic M., Svicevic M., Savovic S., Numerical solution of Stefan problem with variable space grid method based on mixed finite element/finite difference approach, International Journal of Numerical Methods for Heat and Fluid Flow, vol. 27, no. 12, pp. 2682–2695 (2017).
[14] Sobczyk T.J., Algorithm for determining two-periodic steady-states in AC machines directly in time domain, Archives of Electrical Engineering, Polish Academy of Science, Electrical Engineering Committee, vol. 65, no. 3, pp. 575–583 (2016), DOI: 10.1515/aee-2016-0041.
[15] Sobczyk T.J., Radzik M., Radwan-Pragłowska N., Discrete differential operators for periodic and two-periodic time functions, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Emerald Pub. Ltd., vol. 38, no. 1, pp. 325–347 (2019).
[16] Sobczyk T.J., Radzik M., A new approach to steady state analysis of nonlinear electrical circuits, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Emerald Pub. Ltd., vol. 37, no. 3, pp. 716–728 (2017).
[17] Sobczyk T.J., Radzik M., Tulicki J., Direct steady-state solutions for circuit models of nonlinear electromagnetic devices, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Emerald Pub. Ltd., vol. 40, no. 3, pp. 660–675 (2021), DOI: 10.1108/COMPEL-10-2020-0324.
[18] Sobczyk T.J., Jaraczewski M., Application of discrete differential operators of periodic functions to solve 1D boundary-value problems, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Emerald Pub. Ltd., vol. 39, no. 4, pp. 885–897 (2020).
[19] Sobczyk T.J., 2D discrete operators for periodic functions, Proceedings IEEE Conference Selected Issues of Electrical Engineering and Electronics (WZZE), Zakopane, Poland, pp. 1–5 (2019), https://ieeexplore.ieee.org/document/8979992.
[20] Jaraczewski M., Sobczyk T., Leakage Inductances of Transformers at Arbitrarily Located Windings, Energies, vol. 13, no. 23, 6464 (2020), DOI: 10.3390/en13236464.

Go to article

Authors and Affiliations

Tadeusz Jan Sobczyk
1
ORCID: ORCID

  1. Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Cracow University of Technology, 24 Warszawska str., 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the concept of using algorithms for reducing the dimensions of finite-difference equations of two-dimensional (2D) problems, for second-order partial differential equations. Solutions are predicted as two-variable functions over the rectangular domain, which are periodic with respect to each variable and which repeat outside the domain. Novel finite-difference operators, of both the first and second orders, are developed for such functions. These operators relate the value of derivatives at each point to the values of the function at all points distributed uniformly over the function domain. A specific feature of the novel operators follows from the arrangement of the function values as well as the values of derivatives, which are rectangular matrices instead of vectors. This significantly reduces the dimensions of the finite-difference operators to the numbers of points in each direction of the 2D area. The finite-difference equations are created exemplary elliptic equations. An original iterative algorithm is proposed for reducing the process of solving finite-difference equations to the multiplication of matrices.

Go to article

Authors and Affiliations

T. Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

Reverberation time (RT) is an important indicator of room acoustics, however, most studies focus on the mid-high frequency RT, and less on the low-frequency RT. In this paper, a hybrid approach based on geometric and wave methods was proposed to build a more accurate and wide frequency-band room acoustic impulse response. This hybrid method utilized the finite-difference time-domain (FDTD) method modeling at low frequencies and the Odeon simulation at mid-high frequencies, which was investigated in a university classroom. The influence of the low-frequency RT on speech intelligibility was explored. For the low-frequency part, different impedance boundary conditions were employed and the effectiveness of the hybrid method has also been verified. From the results of objective acoustical parameters and subjective listening experiments, the smaller the low-frequency RT was, the higher the Chinese speech intelligibility score was. The syllables, consonants, vowels, and the syllable order also had significant effects on the intelligibility score.
Go to article

Authors and Affiliations

Wuqiong Huang
1 2
Jianxin Peng
1
Tinghui Xie
3

  1. School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
  2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, China
  3. School of Architecture and Art, Shijiazhuang Tiedao University, Shijiazhuang, China
Download PDF Download RIS Download Bibtex

Abstract

The main aim of this analysis is to consider a mutual interference between aircraft motion and surrounding flow field. Euler flow model for inviscid, compressible gas and aircraft flight dynamics model was used to analyse quick dynamic manoeuvres. For such manoeuvres, aerodynamic hysteresis has a great influence on aircraft dynamics, which cannot be simulated with the assumption of quasi-steady aerodynamics. On the other hand, the aircraft motion as a rigid body strongly influences the flow field around itself. To account for this mutual interference, the Euler flow equations were used to obtain aerodynamic forces and moments acting on a simplified aircraft configuration (main wing+ tailplane only) during pull-out manoeuvre, and the flight dynamics equations of motion were used to describe dynamics of an aircraft. Initial conditions for the flight dynamics equation of motion were settled up coming from the solution of the Euler flow model. As a test case, a weak pull-out manoeuvre was selected. During this manoeuvre, the highest value of angle of attack doesn't exceed 12 degrees - the value which can be obtained from the classical approach based on flight dynamics equations of motion with quasisteady aerodynamics. However, coupled Euler flight dynamic model has much wider applicability, and can be used for the analysis of manoeuvres at high angles of attack, including large scale separation at sharp edges, unsteadiness and flow asymmetries even for symmetrical undisturbed flowficld case. This method, if successfully verified to a number of important flight manoeuvres (such as spin, Cobra manoeuvre, roll at high angles of attack and other) can open a new, very promising field in the analysis of aircraft dynamics.
Go to article

Authors and Affiliations

Tomasz Iglewski
Zdobysław Goraj
Download PDF Download RIS Download Bibtex

Abstract

The study presents the analysis of the effects occurring at the propagation of electromagnetic waves within an area containing non-ideal, non-homogenous and absorbing dielectric. The analysed models are connected with housing constructions and include single and double-layered walls made of clay hollow bricks. The influence of the size of holes, the contained clay mass percentage and conductivity of brick on the distribution of electric field is presented. Double-layered wall causes more heterogeneity in distribution of electric field and numerous maxima and minima to compare with singlelayered construction. The presented results refer to the electromagnetic field generated by a wireless communication system (Wi-Fi), operating within the standard frequencies (2.4 GHz and 5 GHz). A FDTD method was used to the analysis of electric field distribution. Also in this paper all formulations of difference method (FDTD) is presented. The possibilities of modifying the described method are indicated too. The obtained values of electric field intensity allow to determining the attenuation coefficient for different variants of the walls. Detailed analysis of influence of different types of building construction will make it possible to better understand the wave phenomena and counteract local fading at planning of wireless networks systems.

Go to article

Authors and Affiliations

Agnieszka Choroszucho
Download PDF Download RIS Download Bibtex

Abstract

This paper compares numerical solutions of transient two-dimensional unsaturated flow equation by using different averaging schemes for internodal conductivities. Averaging methods such as arithmetic mean, geometric mean, upstream weighting, and integrated mean are taken into account, as well as a recent approach based on steady-state approximation. The latter method proved the most flexible, producing relatively accurate solutions for both downward and upward flow cases.

Go to article

Authors and Affiliations

A. Szymkiewicz
K. Burzyński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the dynamic behaviour of three-layer annular plates with damaged facings. The plate is composed of thin laminated, fibre-reinforced composite facings and thicker, foam core. Failure of the plate facings is modelled as fibre or matrix cracks. The plate loaded in the plane of facings with quickly increasing radially compressed forces loses its dynamic stability. Evaluation of the critical state of the plate with failures was carried out using both analytical and numerical solutions. The comparison of results between plates with material properties treated as isotropic, quasi-isotropic and composite has been conducted. Presented tables and figures create the image of dynamic responses of examined composite plates with structure failures.

Go to article

Authors and Affiliations

Dorota Pawlus
Download PDF Download RIS Download Bibtex

Abstract

Thin metal film subjected to a short-pulse laser heating is considered. The parabolic two-temperature model describing the temporal and spatial evolution of the lattice and electrons temperatures is discussed and the melting process of thin layer is taken into account. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.

Go to article

Authors and Affiliations

E. Majchrzak
J. Dziatkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Three-layered, annular plate with viscoelastic core is subjected to loads acting in the plane of the plate facings. One formulates the dynamic, stability problem concerning the action of time-dependent compressive stress on a plate with imperfection. This problem has been solved. One created the basic system of differential equations in which the approximation finite difference method was used for calculations. The essential analysis of the problem was concentrated on evaluation of the influence of the plate imperfection rate and the rate of plate loading growth on the results of calculation of critical parameters at the moment of loss of plate stability. It determines the analysed problem of sensitivity of the plate to imperfection and loading. In the evaluation of the dynamics of this problem, the dynamic factor defined as the quotient of the critical, dynamic load to the static one was used. The idea of dynamic factor and the type of the accepted criterion of the loss of plate stability were taken from the Volmir's work. The observations were confirmed by comparable results of calculations of plate models built in finite element method using the ABAQUS system. The analysis of the stress state in an exemplary plate model calculated in FEM demonstrated the importance of the strength condition in total evaluation of the plate work. One achieved satisfactory correctness of results in both methods.

Go to article

Authors and Affiliations

Dorota Pawlus
Download PDF Download RIS Download Bibtex

Abstract

The deformation modulus of the rock mass as a very important parameter in rock mechanic projects generally is determined by the plate load in-situ tests. While this test is very expensive and time-consuming, so in this study a new method is developed to combin artificial neural networks and numerical modeling for predicting deformation modulus of rock masses. For this aim, firstly, the plate load test was simulated using a Finite Difference numerical model that was verified with actual results of the plate load test in Pirtaghi dam galleries in Iran. Secondly, an artificial neural network is trained with a set of data resulted from numerical simulations to estimate the deformation modulus of the rock mass. The results showed that an ANN with five neurons in the input layer, three hidden layers with 4, 3 and 2 neurons, and one neuron in the output layer had the best accuracy for predicting the deformation modulus of the rock mass.

Go to article

Authors and Affiliations

Narges Saadat Tayarani
Saeed Jamali
Mehdi Motevalli Zadeh
Download PDF Download RIS Download Bibtex

Abstract

The paper proposes a new, state space, finite dimensional, fractional order model of a heat transfer in one dimensional body. The time derivative is described by Caputo operator. The second order central difference describes the derivative along the length. The analytical formulae of the model responses are proved. The stability, convergence, and positivity of the model are also discussed. Theoretical results are verified by experiments.
Go to article

Bibliography

[1] R. Almeida and D.F.M. Torres: Necessary and sufficient conditions for the fractional calculus of variations with caputo derivatives. Communications in Nonlinear Science and Numerical Simulation, 16(3), (2011), 1490–1500, DOI: 10.1016/j.cnsns.2010.07.016.
[2] A. Atangana and D. Baleanu: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer. Thermal Sciences, 20(2), (2016), 763–769, DOI: 10.2298/TSCI160111018A.
[3] R. Caponetto, G. Dongola, L. Fortuna, and I. Petras: Fractional order systems: Modeling and Control Applications. In: Leon O. Chua, editor, World Scientific Series on Nonlinear Science, pages 1–178. University of California, Berkeley, 2010.
[4] S. Das: Functional Fractional Calculus for System Identyfication and Control. Springer, Berlin, 2010.
[5] M. Dlugosz and P. Skruch: The application of fractional-order models for thermal process modelling inside buildings. Journal of Building Physics, 39(5), (2016), 440–451, DOI: 10.1177/1744259115591251.
[6] A. Dzielinski, D. Sierociuk, and G. Sarwas: Some applications of fractional order calculus. Bulletin of the Polish Academy of Sciences, Technical Sciences, 58(4), (2010), 583–592, DOI: 10.2478/v10175-010-0059-6.
[7] C.G. Gal and M. Warma Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations and Control Theory, 5(1), (2016), 61–103, DOI: 10.3934/eect.2016.5.61.
[8] T. Kaczorek Fractional positive contiuous-time linear systems and their reachability. International Journal of Applied Mathematics and Computer Science, 18(2), (2008), 223–228, DOI: 10.2478/v10006-008-0020-0.
[9] T. Kaczorek: Singular fractional linear systems and electrical circuits. International Journal of Applied Mathematics and Computer Science, 21(2), (2011), 379–384, DOI: 10.2478/v10006-011-0028-8.
[10] T. Kaczorek and K. Rogowski: Fractional Linear Systems and Electrical Circuits. Bialystok University of Technology, Bialystok, 2014.
[11] A. Kochubei: Fractional-parabolic systems, preprint, arxiv:1009.4996 [math.ap], 2011.
[12] W. Mitkowski: Approximation of fractional diffusion-wave equation. Acta Mechanica et Automatica, 5(2), (2011), 65–68.
[13] W. Mitkowski: Finite-dimensional approximations of distributed rc networks. Bulletin of the Polish Academy of Sciences. Technical Sciences, 62(2), (2014), 263–269, DOI: 10.2478/bpasts-2014-0026.
[14] W. Mitkowski,W. Bauer, and M. Zagorowska: Rc-ladder networks with supercapacitors. Archives of Electrical Engineering, 67(2), (2018), 377– 389, DOI: 10.24425/119647.
[15] K. Oprzedkiewicz: The discrete-continuous model of heat plant. Automatyka, 2(1), (1998), 35–45 (in Polish).
[16] K. Oprzedkiewicz: The interval parabolic system. Archives of Control Sciences, 13(4), (2003), 415–430.
[17] K. Oprzedkiewicz:Acontrollability problem for a class of uncertain parameters linear dynamic systems. Archives of Control Sciences, 14(1), (2004), 85–100.
[18] K. Oprzedkiewicz: An observability problem for a class of uncertainparameter linear dynamic systems. International Journal of Applied Mathematics and Computer Science, 15(3), (2005), 331–338.
[19] K. Oprzedkiewicz:Non integer order, state space model of heat transfer process using Caputo-Fabrizio operator. Bulletin of the Polish Academy of Sciences. Technical Sciences, 66(3), (2018), 249–255, DOI: 10.24425/122105.
[20] K. Oprzedkiewicz: Non integer order, state space model of heat transfer process using Atangana-Baleanu operator. Bulletin of the Polish Academy of Sciences. Technical Sciences, 68(1), (2020), 43–50, DOI: 10.24425/bpasts.2020.131828.
[21] K. Oprzedkiewicz: Positivity problem for the one dimensional heat transfer process. ISA Transactions, 112, (2021), 281-291 DOI: .
[22] K. Oprzedkiewicz: Fractional order, discrete model of heat transfer process using time and spatial Grünwald-Letnikov operator. Bulletin of the Polish Academy of Sciences. Technical Sciences, 69(1), (2021), 1–10, DOI: 10.24425/bpasts.2021.135843.
[23] K. Oprzedkiewicz, K. Dziedzic, and Ł. Wi˛ eckowski: Non integer order, discrete, state space model of heat transfer process using Grünwald-Letnikov operator. Bulletin of the Polish Academy of Sciences. Technical Sciences, 67(5), (2019), 905–914, DOI: 10.24425/bpasts.2019.130873.
[24] K. Oprzedkiewicz and E. Gawin: A non-integer order, state space model for one dimensional heat transfer process. Archives of Control Sciences, 26(2), (2016), 261–275, DOI: 10.1515/acsc-2016-0015.
[25] K. Oprzedkiewicz, E. Gawin, and W. Mitkowski: Modeling heat distribution with the use of a non-integer order, state space model. International Journal of Applied Mathematics and Computer Science, 26(4), (2016), 749– 756, DOI: 10.1515/amcs-2016-0052.
[26] K. Oprzedkiewicz and W. Mitkowski: A memory-efficient nonintegerorder discrete-time state-space model of a heat transfer process. International Journal of Applied Mathematics and Computer Science, 28(4), (2018), 649–659, DOI: 10.2478/amcs-2018-0050.
[27] K. Oprzedkiewicz,W. Mitkowski, E.Gawin, and K. Dziedzic: The Caputo vs. Caputo-Fabrizio operators in modeling of heat transfer process. Bulletin of the Polish Academy of Sciences. Technical Sciences, 66(4), (2018), 501– 507, DOI: 10.24425/124267.
[28] K. Oprzedkiewicz, E. Gawin, and W. Mitkowski: Parameter identification for non integer order, state space models of heat plant. In MMAR 2016: 21th international conference on Methods and Models in Automation and Robotics: 29 August–01 September 2016, Międzyzdroje, Poland, pages 184– 188, 2016.
[29] P. Ostalczyk: Discrete Fractional Calculus. Applications in Control and Image Processing. Worlsd Scientific Publishing, Singapore, 2016.
[30] I. Podlubny: Fractional Differential Equations. Academic Press, San Diego, 1999.
[31] G. Recktenwald: Finite-difference approximations to the heat equation. 2011.
[32] M. Rozanski: Determinants of two kinds of matrices whose elements involve sine functions. Open Mathematics, 17(1), (2019), 1332–1339, DOI: 10.1515/math-2019-0096.
[33] N. Al Salti, E. Karimov, and S. Kerbal: Boundary-value problems for fractional heat equation involving caputo-fabrizio derivative. New Trends in Mathematical Sciences, 4(4), (2016), 79–89, arXiv:1603.09471.
[34] D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, and P. Ziubinski: Diffusion process modeling by using fractional-order models. Applied Mathematics and Computation, 257(1), (2015), 2–11, DOI: 10.1016/j.amc.2014.11.028.
Go to article

Authors and Affiliations

Krzysztof Oprzędkiewicz
1
ORCID: ORCID
Klaudia Dziedzic
1

  1. AGH University of Science and Technology in Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Robotics, Department of Automatics and Biomedical Engineering, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Laplace operator is a differential operator which is used to detect edges of objects in digital images. This paper presents the properties of the most commonly used third-order 3x3 pixels Laplace contour filters including the difference schemes used to derive them. The authors focused on the mathematical properties of the Laplace filters. The basic reasons of the differences of the properties were studied and indicated using their transfer functions and modified differential equations. The relations between the transfer function for the differential Laplace operator and its difference operators were described and presented graphically. The impact of the corner elements of the masks on the results was discussed. This is a theoretical work. The basic research conducted here refers to a few practical examples which are illustrations of the derived conclusions.We are aware that unambiguous and even categorical final statements as well as indication of areas of the results application always require numerous experiments and frequent dissemination of the results. Therefore, we present only a concise procedure of determination of the mathematical properties of the Laplace contour filters matrices. In the next paper we shall present the spectral characteristic of the fifth order filters of the Laplace type.
Go to article

Authors and Affiliations

Ireneusz Winnicki
1
ORCID: ORCID
Janusz Jasinski
1
ORCID: ORCID
Slawomir Pietrek
1
ORCID: ORCID
Krzysztof Kroszczynski
1
ORCID: ORCID

  1. Military University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Recent years, the design of photonic crystal (PC) based optical devices is receiving keen interest in research and scientific community. In this paper, two dimensional (2D) PC based eight channel demultiplexer is proposed and designed and the functional characteristics of demultiplexer namely resonant wavelength, transmission efficiency, quality factor, spectral width, channel spacing and crosstalk are investigated. The demultiplexer is designed to drop the wavelength centred at 1537.6 nm, 1538.5 nm, 1539.4 nm, 1540.4 nm, 1541.2 nm, 1541.9 nm, 1542.6 nm and 1543.1 nm. The proposed demultiplexer is primarily composed of bus waveguide, drop waveguide and quasi square ring resonator. The quasi square ring resonator and square ring micro cavity (inner rods) are playing a vital role for a desired channel selection. The operating range of the devices is identified through a photonic band gap (PBG) which is obtained using a plane wave expansion (PWE) method. The functional characteristics of the proposed demultiplexer are attained using a 2D finite difference time domain (FDTD) method. The proposed device offers low crosstalk and high transmission efficiency with ultra-compact size, hence, it is highly desirable for DWDM applications.

Go to article

Authors and Affiliations

V. Kannaiyan
R. Savarimuthu
S.K. Dhamodharan
Download PDF Download RIS Download Bibtex

Abstract

Fibre optic microlenses are small optical elements formed on the end-faces of optical fibres. Their dimensions range from a few tens to hundreds of micrometres. In the article, four optical fibre microlenses are modelled and analysed. Microlenses are used for light beam manipulation and quantitative metrics are needed to evaluate the results, for example, the size of focusing spot or intensity distribution. All four lenses tested are made of rods of the same refractive index; they were welded to a single-mode fibre. Two modelling methods were used to analyse the lenses: ray-tracing and finite-difference time-domain. The ray-tracing algorithm moves rays from one plane to another and refracts them on the surfaces. Finite-difference time-domain consists of calculating Maxwell’s equations by replacing spatial and temporal derivatives by quotients of finite differences. In this paper, the results of the microlenses analyses obtained from ray-tracing and finite-difference time-domain methods were compared. Both methods of analysis showed the presence of undesirable side lobes related to lens design, namely rods too long for lens fabrication. The test results were compared with the measurements made with the knife-edge method. The use of a single tool to determine parameters of an optical fibre lens does not allow for precise determination of its properties. It is necessary to use different tools and programs. This allows a complete analysis of the beam parameters, letting us find the causes of technical issues that limit the performance of the lenses.
Go to article

Bibliography

  1. Tekin, T. Review of packaging of optoelectronic, photonic, and MEMS components. IEEE J. Sel. Quantum Electron. 17, 704–719 (2011). https://doi.org/10.1109/JSTQE.2011.2113171
  2. Zheng, W. Optic Lenses Manufactured on Fibre Ends. in 2015 Optoelectronics Global Conference (OGC) 1–7 (IEEE, 2015). https://doi.org/10.1109/OGC.2015.7336855
  3. Corning SMF-28 Ultra Optical Fibre. Corning. https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf (2014) (Accessed Sept. 3rd, 2021) .
  4. Soldano, L. B. & Pennings, E. C. M. Optical multi-mode inter-ference devices based on self- imaging: principles and applications. J. Light. Technol. 13, 615–627 (1995). https://doi.org/10.1109/50.372474
  5. Yuan, W., Brown, R., Mitzner, W., Yarmus, L. & Li, X. Super-achromatic monolithic microprobe for ultrahigh-resolution endo-scopic optical coherence tomography at 800 nm. Commun. 8, 1531 (2017). https://doi.org/10.1038/s41467-017-01494-4
  6. Liu, Z. L. et al. Fabrication and application of a non-contact double-tapered optical fibre tweezers. Express 25, 22480–22489 (2017). https://doi.org/10.1364/oe.25.022480
  7. Astratov, V. et al. Photonic Nanojets for Laser Surgery. (SPIE Newsroom, 2010).
  8. Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in Nat. Photonics 12, 540–547 (2018). https://doi.org/10.1038/s41566-018-0224-2
  9. Siegman, A. E. Lasers. (University Science Books, 1986).
  10. Ross, T. S. Laser Beam Quality Metrics. Laser Beam Quality Metrics (SPIE, 2013).
  11. OSLO Optics Software for Layout and Optimization. Optics Reference. (Lambda Research Corporation, Littleton, MA, USA, 2011). https://www.lambdares.com/wp- content/uploads/support/oslo/oslo_edu/oslo-optics-reference.pdf
  12. Fibre Lenses. Fibrain. https://photonics.fibrain.com/produkt/fibre-lenses,640.html#zdjecia (2020) (Accessed Aug. 29th, 2020) .
  13. Parsons, J., Burrows, C. P., Sambles, J. R. & Barnes, W. L. A  comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures. J. Mod. Opt. 57, 356–365 (2010). https://doi.org/10.1080/09500341003628702
  14. Schneider, J. B. Understanding the Finite-Difference Time-Domain Method. https://eecs.wsu.edu/~schneidj/ufdtd/ufdtd.pdf (2021).
  15. Bachmann, L., Zezell, D. M. & Maldonado, E. P. Determination of beam width and quality for pulsed lasers using the knife‐edge method. Instrum. Sci. Technol. 31, 47–52 (2003). https://doi.org/10.1081/CI-120018406
Go to article

Authors and Affiliations

Adam Śliwak
1
ORCID: ORCID
Mateusz Jeleń
1
Sergiusz Patela
1
ORCID: ORCID

  1. Faculty of Microsystem, Wroclaw University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work the influence of the cavity parameters on optical losses of a simple intensity-based in-line refractive index sensor utilizing a micromachined side-hole fibre was studied by means of numerical simulations. To perform these simulations, the Authors used the finite-difference time-domain method. The proposed sensor setup consists of light source, micromachined optical fibre as a sensor head, and a detector which makes it low-cost and easy to build. The changes of the external refractive index can be, therefore, recovered by direct measurements of the transmitted intensity from which insertion loss values can be calculated. By changing geometry of the cavity micromachined into the side-hole optical fibre, it was possible to determine its influence on the final sensor sensitivity and measurements range. Based on the provided analysis of simulations results, a simple fibre optic sensor can be fabricated mainly for sensing external liquids refractive index for application in biochemistry or healthcare.
Go to article

Bibliography

  1. Grattan, K. T. V. & Sun, T. Fibre optic sensor technology: an overview. Actuator A Phys. 82, 40–61 (2000). https://doi.org/10.1016/S0924-4247(99)00368-4
  2. Zhou, X., Zhang, L. & Pang, W. Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection. Express 24, 18197–18208 (2016). https://doi.org/10.1364/OE.24.018197
  3. Rao, Y.-J. & Ran, Z.-L. Optic fibre sensors fabricated by laser-micromachining. Fiber Technol. 19 808–821 (2013). https://doi.org/10.1016/j.yofte.2013.07.016
  4. Wang, Y., Liao, C. R. & Wang, D. N. Femtosecond laser-assisted selective infiltration of microstructured optical fibres. Express 18, 18056–18060 (2010). https://doi.org/10.1364/OE.18.018056
  5. Pallarés-Aldeiturriaga, D., Roldán-Varona, P., Rodríguez-Cobo, L. & López-Higuera, J. M. Optical fibre sensors by direct laser processing: A review. Sensors 20, 6971 (2020). https://doi.org/10.3390/s20236971
  6. Kumar, A., Pankaj, V. & Poonam, J. Refractive index sensor for sensing high refractive index bioliquids at the THz frequency. Opt. Soc. Am. B 38, F81–F89 (2021). https://doi.org/10.1364/JOSAB.438367
  7. Pérez, M. A., González, O. & Arias, J. R., Optical Fibre Sensors for Chemical and Biological Measurements. in Current Developments in Optical Fibre Technology (eds. Harun, S. W. & Arof, H.) (IntechOpen, 2013). https://doi.org/10.5772/52741
  8. Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 16, 634–644 (2016). https://doi.org/1039/C5LC01445J
  9. Leal-Junior, A. G. et al. Polymer optical fibre sensors in healthcare applications: A comprehensive review. Sensors 19, 3156 (2019). https://doi.org/10.3390/s19143156
  10. Yan, X., Li, H. & Su, X. Review of optical sensors for pesticides. Trends Analyt. Chem. 103, 1–20 (2018). https://doi.org/10.1016/j.trac.2018.03.004
  11. Joe, H. E., Yun, H., Jo, S.-H., Jun, M. G. & Min, B.-K. A review on optical fibre sensors for environmental monitoring. Int. J. Pr. Eng. Man-Gt. 5, 173–191 (2018). https://doi.org/10.1007/s40684-018-0017-6
  12. Costa, G. K. B. et al. In-fibre Fabry-Perot interferometer for strain and magnetic field sensing. Express 24, 14690–14696 (2016). https://doi.org/10.1364/OE.24.014690
  13. Zhou, N. et al. MEMS-based reflective intensity-modulated fibre-optic sensor for pressure measurements. Sensors 15, 2233 (2020). https://doi.org/3390/s20082233
  14. Pevec, S. & Donlagic, D. Multiparameter fibre-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive index, and temperature. IEEE Photon. J. 9, 1–14 (2017). https://doi.org/10.1109/JPHOT.2017.2651978
  15. Stasiewicz, K. A., Jakubowska, I. & Dudek, M. Detection of organosulfur and organophosphorus compounds using a hexafluoro-butyl acrylate-coated tapered optical fibres. Polymers 14, 612 (2022). https://doi.org/10.3390/polym14030612
  16. Pura, P. et al. Polymer microtips at different types of optical fibres as functional elements for sensing applications. Light. Technol. 3, 2398–2404 (2015). https://doi.org/10.1109/JLT.2014.2385961
  17. Marć, P., Żuchowska, M. & Jaroszewicz, L. Reflective properties of a polymer micro-transducer for an optical fibre refractive index sensor. Sensors 20, 6964 (2020). https://doi.org/10.3390/s20236964
  18. Marć, P., Żuchowska, M., Jakubowska, I. & Jaroszewicz, L. R. Polymer microtip on a multimode optical fibre as a threshold volatile organic compounds sensor. Sensors 22, 1246 (2022). https://doi.org/10.3390/s22031246
  19. Tian, Z., Yam, S. S. H. & Loock, H. P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fibre. Lett. 33, 1105–1107 (2008). https://doi.org/10.1364/OL.33.001105
  20. Ran, Z., Rao, Z., Zhang, J., Liu, Z. & Xu, B. A Miniature fibre-optic refractive-index sensor based on laser-machined fabry–perot interferometer tip. Light. Technol. 27, 5426–5429 (2009). https://doi.org/10.1109/JLT.2009.2031656
  21. Wei, T., Han, Y., Li, Y., Tsai, H. L. &. Xiao, H. Temperature-insensitive miniaturized fibre inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Express 16, 5764–5769 (2008). https://doi.org/10.1364/OE.16.005764
  22. Enokihara, A., Izutsu, M. & Sueta, T. Optical fibre sensors using the method of polarization-rotated reflection. Light. Technol. 5, 1584–1590 (1987). https://doi.org/10.1109/JLT.1987.1075449
  23. Zheng, Y., Li, J., Liu, Y., Li, Y. & Qu, S. Dual-parameter demodu-lated torsion sensor based on the Lyot filter with a twisted polarization-maintaining fibre. Express 30, 2288–2298, (2022). https://doi.org/10.1364/OE.448088
  24. Jin, W. et al. Recent advances in spectroscopic gas sensing with micro/nano-structured optical fibres. Photonic Sens. 11, 141–157 (2021). https://doi.org/10.1007/s13320-021-0627-4
  25. Xie, H. M., Dabkiewicz, Ph., Ulrich, R. & Okamoto, K. Side-hole fibre for fibre-optic pressure sensing. Lett. 11, 333–335 (1986). https://doi.org/10.1364/OL.11.000333
  26. Bao, L., Dong, X., Shum, P. P. & Shen, C. High sensitivity liquid level sensor based on a hollow core fibre structure. Commun. 499, 127279 (2019). https://doi.org/10.1016/j.optcom.2021.127279
  27. Lin, H., Liu, F., Guo, H., Zhou A. & Dai, Y. Ultra-highly sensitive gas pressure sensor based on dual side-hole fibre interferometers with Vernier effect. Express 26, 28763–28772 (2018). https://doi.org/10.1364/OE.26.028763
  28. Taflove, A. & Hagness, S. C. Computational Electrodynamics – The Finite-Difference Time-Domain Method – 3rd Edition. (Artech House, 2005). https://us.artechhouse.com/Computational-Electrodynamics-Third-Edition-P1929.aspx
  29. Bird, T. S. Definition and misuse of return loss [Report of the Transactions Editor-in-Chief]. IEEE Antennas Propag. Mag. 51, 166–167 (2009). https://doi.org/10.1109/MAP.2009.5162049
Go to article

Authors and Affiliations

Michał Dudek
1
ORCID: ORCID
Kinga.K. Köllő
1

  1. Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this attempt, Two Dimensional Photonic Crystal (2DPC) Quasi Square Ring Resonator (QSRR) based four channel demultiplexer is proposed and designed for Wavelength Division Multiplexing systems. The performance parameters of the demultiplexer such as transmission efficiency, passband width, line spacing, Q factor and crosstalk are investigated. The proposed demultiplexer is composed of bus waveguide, drop waveguide and QSRR. In the proposed demultiplexer, the output ports are arranged separately in odd and even number, where an odd number of ports are located on the right side and even number of ports are located on the left side of the bus waveguide that are used to reduce the channel interference or crosstalk. Further, the refractive index of rods around the center rod is increased linearly one to another in order to improve the signal quality. The resonant wavelengths of the proposed demultiplexer are of 1521.1 nm, 1522.0 nm, 1523.2 nm and 1524.3 nm, respectively. The footprint of the device is of 180.96 μm2. Then, a four channel point to point network is designed and the proposed four channel demultiplexer is implemented by replacing a conventional demultiplexer. Finally, functional parameters of the network, namely, BER, receiver sensitivity and Q factor are estimated by varying the link distance. This attempt could create new dimensions of research in the domain of photonic networks.

Go to article

Authors and Affiliations

V. Kannaiyan
R. Savarimuthu
S.K. Dhamodharan
Download PDF Download RIS Download Bibtex

Bibliography

[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, p. 2059, 1987.
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, p. 2486, 1987.
[3] Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzy´nski, and P. A. Deymier, “Two-dimensional phononic crystals: Examples and applications,” Surface Science Reports, vol. 65, no. 8, pp. 229–291, 2010.
[4] R. M. Younis, N. F. Areed, and S. S. Obayya, “Fully integrated and and or optical logic gates,” IEEE Photonics Technology Letters, vol. 26, no. 19, pp. 1900–1903, 2014.
[5] M. Pirzadi, A. Mir, and D. Bodaghi, “Realization of ultra-accurate and compact all-optical photonic crystal or logic gate,” IEEE Photonics Technology Letters, vol. 28, no. 21, pp. 2387–2390, 2016.
[6] E. H. Shaik and N. Rangaswamy, “Phase interference dependent single phc based logic gate structure with t-shaped waveguide as xor, not and or logic gates,” in 2017 Progress in Electromagnetics Research Symposium- Fall (PIERS-FALL). IEEE, 2017, pp. 210–214.
[7] E. Y. Glushko and A. Zakhidov, “Theory of the nonlinear all-optical logical gates based on pbg structures,” in Proceedings of CAOL 2005. Second International Conference on Advanced Optoelectronics and Lasers, 2005., vol. 2. IEEE, 2005, pp. 184–190.
[8] A. Glushko et al., “Nonlinear pbg structures for all-optical signal processing,” in 2006 International Workshop on Laser and Fiber-Optical Networks Modeling. IEEE, 2006, pp. 473–476.
[9] K. Goudarzi, A. Mir, I. Chaharmahali, and D. Goudarzi, “All-optical xor and or logic gates based on line and point defects in 2-d photonic crystal,” Optics & Laser Technology, vol. 78, pp. 139–142, 2016.
[10] S. Mitatha, S. Chaiyasoonthorn, and P. Juleang, “Optical asymmetric key cryptography in rofso for high security using ring resonator system,” in 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE, 2019, pp. 1–4.
[11] A. Macker, A. K. Shukla, and V. P. Dubey, “A novel design of all optical and gate based on 2-d photonic crystal,” in 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT). IEEE, 2017, pp. 1–3.
[12] M. M. Gupta and S. Medhekar, “All-optical not and and gates using counter propagating beams in nonlinear mach–zehnder interferometer made of photonic crystal waveguides,” Optik, vol. 127, no. 3, pp. 1221– 1228, 2016.
[13] A. Rahmani and M. Asghari, “An ultra-compact and high speed all optical or/nor gate based on nonlinear phcrr,” Optik, vol. 138, pp. 314– 319, 2017.
[14] E. H. Shaik and N. Rangaswamy, “Realization of xnor logic function with all-optical high contrast xor and not gates,” Opto-Electronics Review, vol. 26, no. 1, pp. 63–72, 2018.
[15] G. Joseph and V. Kalyani, “Study of quality factor of silicon based not logic gate using fdtd,” in 2014 International Conference on Computational Intelligence and Communication Networks. IEEE, 2014, pp. 909–912.
[16] E. H. Shaik and N. Rangaswamy, “Investigation on phc based t-shaped waveguide as all-optical xor, not, or and and logic gates,” in 2017 IEEE International Conference on Industrial and Information Systems (ICIIS). IEEE, 2017, pp. 1–6.
[17] K. Bhadel and R. Mehra, “Design and simulation of 2-d photonic crystal based all-optical and logic gate,” in 2014 International Conference on Computational Intelligence and Communication Networks. IEEE, 2014, pp. 973–977.
[18] H. Mondal, S. Chanda, M. Sen, and T. Datta, “All optical and gate based on silicon photonic crystal,” in 2015 International Conference on Microwave and Photonics (ICMAP). IEEE, 2015, pp. 1–2.
[19] M. Pirzadi and A. Mir, “Ultra optimized y-defect waveguide for realizing reliable and robust all-optical logical and gate,” in 2015 23rd Iranian Conference on Electrical Engineering. IEEE, 2015, pp. 1067–1071.
[20] H. Mondal, S. Chanda, and P. Gogoi, “Realization of all-optical logic and gate using dual ring resonator,” in 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT). IEEE, 2016, pp. 553–556.
[21] B. Ghosh, R. R. Pal, and S. Mukhopadhyay, “A new approach to alloptical half-adder by utilizing semiconductor optical amplifier based mzi wavelength converter,” Optik, vol. 122, no. 20, pp. 1804–1807, 2011.
[22] A. Kabilan, X. S. Christina, and P. E. Caroline, “Photonic crystal based all optical or and xo logic gates,” in 2010 Second International conference on Computing, Communication and Networking Technologies. IEEE, 2010, pp. 1–4.
[23] S. Dey, A. K. Shukla, and V. P. Dubey, “Design of all optical logical or gate based on 2-d photonic crystal,” in 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT). IEEE, 2017, pp. 1–3.
[24] Y. Wan, M. Yun, L. Xia, and X. Zhao, “13 beam splitter based on self-collimation effect in two-dimensional photonic crystals,” Optik, vol. 122, no. 4, pp. 337–339, 2011.
[25] E. haq Shaik and N. Rangaswamy, “High contrast all-optical xor gate with t-shaped photonic crystal waveguide using phase based interference,” in 2017 Fourteenth International Conference on Wireless and Optical Communications Networks (WOCN). IEEE, 2017, pp. 1–3.
[26] A. Coelho Jr, M. Costa, A. Ferreira, M. Da Silva, M. Lyra, and A. Sombra, “Realization of all-optical logic gates in a triangular triplecore photonic crystal fiber,” Journal of Lightwave Technology, vol. 31, no. 5, pp. 731–739, 2013.
[27] P. Rani, Y. Kalra, and R. Sinha, “Design of all optical logic gates in photonic crystal waveguides,” Optik, vol. 126, no. 9-10, pp. 950–955, 2015.
[28] S. Combri´e, A. Martin, G. Moille, G. Lehoucq, A. De Rossi, J.-P. Reithmaier, L. Bramerie, and M. Gay, “An efficient all-optical gate based on photonic crystals cavities and applications,” in 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, 2014, pp. 1–4.
[29] L. E. P. Caballero, J. P. V. Cano, P. S. Guimar˜aes, and O. P. V. Neto, “Effect of structural disorder on photonic crystal logic gates,” IEEE Photonics Journal, vol. 9, no. 5, pp. 1–15, 2017.
[30] P. Rani, Y. Kalra, and R. Sinha, “Realization of and gate in y shaped photonic crystal waveguide,” Optics Communications, vol. 298, pp. 227– 231, 2013.
[31] L. He, W. Zhang, and X. Zhang, “Topological all-optical logic gates based on two-dimensional photonic crystals,” Optics Express, vol. 27, no. 18, pp. 25 841–25 859, 2019.
[32] A. Saharia, N. Mudgal, A. Agarwal, S. Sahu, S. Jain, A. K. Ghunawat, and G. Singh, “A comparative study of various all-optical logic gates,” in Optical and Wireless Technologies. Springer, 2020, pp. 429–437.

Go to article

Authors and Affiliations

Mahesh V. Sonth
1
G. Srikanth
1
Pankaj Agrawal
1
B. Premalatha
2

  1. Department of Electronics and Communication Engineering, CMR Technical Campus, Hyderabad-501401, Telangana, India
  2. Department of Electronics and Communication Engineering, CMR College of Engineering & Technology, Hyderabad-501401,Telangana, India
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the numerical method of solving the one-dimensional subdiffusion equation with the source term is presented. In the approach used, the key role is played by transforming of the partial differential equation into an equivalent integro-differential equation. As a result of the discretization of the integro-differential equation obtained an implicit numerical scheme which is the generalized Crank-Nicolson method. The implicit numerical schemes based on the finite difference method, such as the Carnk-Nicolson method or the Laasonen method, as a rule are unconditionally stable, which is their undoubted advantage. The discretization of the integro-differential equation is performed in two stages. First, the left-sided Riemann-Liouville integrals are approximated in such a way that the integrands are linear functions between successive grid nodes with respect to the time variable. This allows us to find the discrete values of the integral kernel of the left-sided Riemann-Liouville integral and assign them to the appropriate nodes. In the second step, second order derivative with respect to the spatial variable is approximated by the difference quotient. The obtained numerical scheme is verified on three examples for which closed analytical solutions are known.
Go to article

Bibliography

  1.  T. Kosztołowicz, K. Dworecki, and S. Mrówczyński, “How to measure subdiffusion parameters,” Phys. Rev. Lett., vol. 94, p.  170602, 2005, doi: 10.1016/j.tins.2004.10.007.
  2.  T. Kosztołowicz, K. Dworecki, and S. Mrówczyński, “Measuring subdiffusion parameters,” Phys. Rev. E, vol. 71, p.  041105, 2005.
  3.  E. Weeks, J. Urbach, and L. Swinney, “Anomalous diffusion in asymmetric random walks with a quasi-geostrophic flow example,” Physica D, vol. 97, pp. 291–310, 1996.
  4.  T. Solomon, E. Weeks, and H. Swinney, “Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow,” Phys. Rev. Lett., vol. 71, pp. 3975–3979, 1993.
  5.  N.E. Humphries, et al., “Environmental context explains Lévy and Brownian movement patterns of marine predators,” Nature, vol. 465, pp. 1066–1069, 2010.
  6.  U. Siedlecka, “Heat conduction in a finite medium using the fractional single-phase-lag model,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, pp. 402–407, 2019.
  7.  R. Metzler and J. Klafter, “The random walk:s guide to anomalous diffusion: a fractional dynamics approach,” Phys. Rep., vol. 339, pp. 1–77, 2000.
  8.  R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A: Math. Gen., vol. 37, pp. 161–208, 2004.
  9.  M. Aslefallah, S. Abbasbandy, and E. Shivanian, “Numerical solution of a modified anomalous diffusion equation with nonlinear source term through meshless singular boundary method,” Eng. Anal. Boundary Elem., vol. 107, pp. 198–207, 2019.
  10.  Y. Li and D. Wang, “Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term,” Int. J. Comput. Math., vol. 94, pp. 821–840, 2017.
  11.  X. Cao, X. Cao, and L. Wen, “The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term,” J. Comput. Appl. Math., vol. 318, pp. 199–210, 2017.
  12.  A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006.
  13.  E.D. Rainville, Special Functions. New York: The Macmillan Company, 1960.
  14.  J.-L. Liu and H.MSrivastava, “Classes of meromorphically multivalent functions associated with the generalized hypergeometric function,” Math. Comput. Modell., vol. 39, pp. 21–34, 2004.
  15.  Y.L. Luke, “Inequalities for generalized hypergeometric functions,” J. Approximation Theory, vol. 5, pp. 41–65, 1972.
  16.  M. Włodarczyk and A. Zawadzki, “The application of hypergeometric functions to computing fractional order derivatives of sinusoidal functions,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, pp. 243–248, 2016.
  17.  M. Błasik, “A generalized Crank-Nicolson method for the solution of the subdiffusion equation,” 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), pp.  726–729, 2018.
  18.  M. Błasik, “Zagadnienie stefana niecałkowitego rzędu,” Ph.D. dissertation, Politechnika Częstochowska, 2013.
  19.  M. Błasik and M. Klimek, “Numerical solution of the one phase 1d fractional stefan problem using the front fixing method,” Math. Methods Appl. Sci., vol. 38, no. 15, pp. 3214–3228, 2015.
  20.  K. Diethelm, The Analysis of Fractional Differential Equations. Berlin: Springer-Verlag, 2010.
Go to article

Authors and Affiliations

Marek Błasik
1

  1. Institute of Mathematics, Czestochowa University of Technology, al. Armii Krajowej 21, 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study investigated the effect of the fill factor, lattice constant, and the shape and type of meta-atom material on the reduction of mechanical wave transmission in quasi-two-dimensional phononic structures. A finite difference algorithm in the time domain was used for the analysis, and the obtained time series were converted into the frequency domain using the discrete Fourier transform. The use of materials with large differences in acoustic impedance allowed to determine the influence of the meta-atom material on the propagation of the mechanical wave.
Go to article

Authors and Affiliations

Sebastian Garus
1
ORCID: ORCID
Wojciech Sochacki
1
ORCID: ORCID
Paweł Kwiatoń
1
ORCID: ORCID
Marcin Nabiałek
2
ORCID: ORCID
Jana Petrů
3
ORCID: ORCID
Mariusz Kubanek
4
ORCID: ORCID

  1. Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fundamentals of Machinery Design, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland
  2. Faculty of Production Engineering and Materials Technology, Department of Physics, Czestochowa University of Technology, Armii Krajowej 19, 42-201 Częstochowa, Poland
  3. Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava,70833 Ostrava, Czech Republic
  4. Faculty of Mechanical Engineering and Computer Science, Department of Computer Science, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The problem of the arch barrel deformation in railway backfilled arch bridges caused by their typical service loads is analysed. The main attention is paid to vertical or radial displacements of characteristic points of the arch barrel. In the study results of deflection measurements carried out on single and multi-span backfilled arch bridges made of bricks or plain concrete during passages of various typical railway vehicles are used. On the basis of such results empirical influence functions of displacements are being created. In the next step, the results are utilised to estimate bending effects within the arch. The paper includes different procedures based on measurements of displacements in various points and directions. Using empirical influence functions arbitrary virtual load cases may be also considered. In this manner the proposed methodology shows a potential to be an effective tool of comprehensive calibration of numerical models of backfilled arch bridges on the basic of field tests carried out under any live loads.
Go to article

Authors and Affiliations

Tomasz Kamiński
1
ORCID: ORCID
Czesław Machelski
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wyb. Wyspianskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the study is to investigate the mechanical properties around an underground gas storage cavern in bedded salt rock. Firstly, considering the characteristics of the salt rock formation in China, the mechanical model was simplified into a hollow cylinder, which containing non-salt interlayer. In terms of elastic theory, Love displacement function was developed, and the elastic general solution of stress and deformation components were obtained after determining the undetermined coefficients. Under the same condition, numerical simulation was carried out. The validity of the elastic general solution is verified by comparing to numerical simulation results. Furthermore, Based on the feasible general elastic solution, viscoelastic solution was obtained through Laplace transformation and inverse Laplace transform, which could provide reference for the study on the stability and tightness of underground gas storage carven during operation to some extent.

Go to article

Authors and Affiliations

P. Xie
H.J. Wen
G.J. Wang
J. Hu
Download PDF Download RIS Download Bibtex

Abstract

The problem of optimal design of symmetrical double-lap adhesive joint is considered. It is assumed that the main plate has constant thickness, while the thickness of the doublers can vary along the joint length. The optimization problem consists in finding optimal length of the joint and an optimal cross-section of the doublers, which provide minimum structural mass at given strength constraints. The classical Goland-Reissner model was used to describe the joint stress state. A corresponding system of differential equations with variable coefficients was solved using the finite difference method. Genetic optimization algorithm was used for numerical solution of the optimization problem. In this case, Fourier series were used to describe doubler thickness variation along the joint length. This solution ensures smoothness of the desired function. Two model problems were solved. It is shown that the length and optimal shape of the doubler depend on the design load.
Go to article

Bibliography

[1] L.F.M. da Silva, P.J.C. das Neves, R.D. Adams, and J.K. Spelt. Analytical models of adhesively bonded joints. Part I: Literature survey. International Journal of Adhesion and Adhesives, 29(3):319–330, 2009. doi: 10.1016/j.ijadhadh.2008.06.005.
[2] E.H. Wong and J. Liu. Interface and interconnection stresses in electronic assemblies – A critical review of analytical solutions. Microelectronics Reliability, 79:206–220, 2017. doi: 10.1016/j.microrel.2017.03.010.
[3] S. Budhe, M.D. Banea, S. de Barros, and L.F.M. da Silva. An updated review of adhesively bonded joints in composite materials. International Journal of Adhesion and Adhesives, 72:30–42, 2017. doi: 10.1016/j.ijadhadh.2016.10.010.
[4] K.P. Barakhov and I.M. Taranenko. Influence of joint edge shape on stress distribution in adhesive film. In: M. Nechyporuk, V. Pavlikov, D. Kritskiy (eds) Integrated Computer Technologies in Mechanical Engineering – 2021. ICTM 2021. Lecture Notes in Networks and Systems, 367:123–132, Springer, Cham, 2022. doi: 10.1007/978-3-030-94259-5_12.
[5] H. Lee, S. Seon, S. Park, R. Walallawita, and K. Lee. Effect of the geometric shapes of repair patches on bonding strength. The Journal of Adhesion, 97(3):1–18, 2019. doi: 10.1080/00218464.2019.1649660.
[6] F. Ramezani, M.R. Ayatollahi, A. Akhavan-Safar, and L.F.M. da Silva. A comprehensive experimental study on bi-adhesive single lap joints using DIC technique. International Journal of Adhesion and Adhesives, 102:102674, 2020. doi: 10.1016/j.ijadhadh.2020.102674.
[7] Ya.S. Karpov. Jointing of high-loaded composite structural components. Part 2. Modeling of stress-strain state. Strength of Materials, 38(5):481–491, 2006. doi: 10.1007/s11223-006-0067-9.
[8] J. Kupski and S. Teixeira de Freitas. Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures. Composite Structures, 268:113923, 2021. doi: 10.1016/j.compstruct.2021.113923.
[9] S. Amidi and J. Wang. An analytical model for interfacial stresses in double-lap bonded joints. The Journal of Adhesion, 95(11):1031–1055, 2018. doi: 10.1080/00218464.2018.1464917.
[10] H. Kumazawa and T. Kasahara. Analytical investigation of thermal and mechanical load effects on stress distribution in adhesive layer of double-lap metal-composite bonded joints. Advanced Composite Materials, 28(4):425–444, 2019. doi: 10.1080/09243046.2019.1575028.
[11] S. Kurennov and N. Smetankina. Stress-strain state of a double lap joint of circular form. Axisymmetric model. In: M. Nechyporuk, V. Pavlikov D. Kritskiy (eds) Integrated Computer Technologies in Mechanical Engineering – 2021. ICTM 2021. Lecture Notes in Networks and Systems, 367:36–46, Springer, Cham, 2022. doi: 10.1007/978-3-030-94259-5_4.
[12] S. E. Stapleton, B. Stier, S. Jones, A. Bergan, I. Kaleel, M. Petrolo, E. Carrera, and B.A. Bednarcyk. A critical assessment of design tools for stress analysis of adhesively bonded double lap joints. Mechanics of Advanced Materials and Structures, 28(8):791–811, 2019. doi: 10.1080/15376494.2019.1600768.
[13] R.H. Kaye and M. Heller. Through-thickness shape optimisation of bonded repairs and lap-joints. I nternational Journal of Adhesion and Adhesives, 22(1):7–21, 2002. doi: 10.1016/s0143-7496(01)00029-x.
[14] S. Kurennov, K. Barakhov, I. Taranenko, and V. Stepanenko. A genetic algorithm of optimal design of beam at restricted sagging. Radioelectronic and Computer Systems, 1:83–91, 2022. doi: 10.32620/reks.2022.1.06.
[15] V.S. Symonov, I.S. Karpov, and J. Juračka. Optimization of a panelled smooth composite shell with a closed cross-sectional contour by using a genetic algorithm. Mechanics of Composite Materials, 49(5):563–570, 2013. doi: 10.1007/s11029-013-9372-0.
[16] N.S. Kulkarni, V.K. Tripathi. Variable thickness approach for finding minimum laminate thickness and investigating effect of different design variables on its performance. Archive of Mechanical Engineering, 65(4):527–551, 2018. doi: 10.24425/ame.2018.125441.
[17] H. Ejaz, A. Mubashar, I.A. Ashcroft, E. Uddin, and M. Khan. Topology optimisation of adhesive joints using non-parametric methods. International Journal of Adhesion and Adhesives, 81:1–10, 2018. doi: 10.1016/j.ijadhadh.2017.11.003.
[18] H.L. Groth and P. Nordlund. Shape optimization of bonded joints. International Journal of Adhesion and Adhesives, 11(4):204–212, 1991. doi: 10.1016/0143-7496(91)90002-y.
[19] R.Q. Rodríguez, R. Picelli, P. Sollero, and R. Pavanello. Structural shape optimization of bonded joints using the ESO method and a honeycomb-like mesh. J ournal of Adhesion Science and Technology, 28(14-15):1451–1466, 2014. doi: 10.1080/01694243.2012.698112.
[20] E.G. Arhore, M. Yasaee, and I. Dayyani. Comparison of GA and topology optimization of adherend for adhesively bonded metal composite joints. International Journal of Solids and Structures, 226-227:111078, 2021. doi: 10.1016/j.ijsolstr.2021.111078.
[21] S. Kumar, and de A. de Tejada Alvarez. Modeling of geometrically graded multi-material single-lap joints. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. doi: 10.2514/6.2015-1885.
[22] S.S. Kurennov: Refined mathematical model of the stress state of adhesive lap joint: experimental determination of the adhesive layer strength criterion. Strength of Materials, 52:779–789, 2020. doi: 10.1007/s11223-020-00231-5.
[23] P. Zou, J. Bricker, and W. Uijttewaal. Optimization of submerged floating tunnel cross section based on parametric Bézier curves and hybrid backpropagation – genetic algorithm. Marine Structures, 74:102807, 2020. doi: 10.1016/j.marstruc.2020.102807.
[24] O. Coskun and H.S.Turkmen. Multi-objective optimization of variable stiffness laminated plates modeled using Bézier curves. Composite Structures, 279:114814, 2022. doi: 10.1016/j.compstruct.2021.114814.
[25] S. Kumar and P.C. Pandey. Behaviour of bi-adhesive joints. Journal of Adhesion Science and Technology, 24(7):1251–1281, 2010. doi: 10.1163/016942409x12561252291982.
[26] Ö. Öz and H. Özer. On the von Mises elastic stress evaluations in the bi-adhesive single-lap joint: a numerical and analytical study. Journal of Adhesion Science and Technology, 28(21):2133–2153, 2014. doi: 10.1080/01694243.2014.948110.
[27] E. Selahi. Elasticity solution of adhesive tubular joints in laminated composites with axial symmetry. Archive of Mechanical Engineering, 65(3):441–456, 2018. doi: 10.24425/124491.
[28] K. Barakhov, D. Dvoretska, and O. Poliakov. One-dimensional axisymmetric model of the stress state of the adhesive joint. In: M. Nechyporuk, V. Pavlikov, D. Kritskiy (eds) I ntegrated Computer Technologies in Mechanical Engineering – 2020. ICTM 2020. Lecture Notes in Networks and Systems, 188:310–319, Springer, Cham, 2021. doi: 10.1007/978-3-030-66717-7_26.
[29] S. Kurennov, N. Smetankina, V. Pavlikov, D. Dvoretskaya, V. Radchenko. Mathematical model of the stress state of the antenna radome joint with the load-bearing edging of the skin cutout. In: D.D. Cioboată, (ed.) International Conference on Reliable Systems Engineering (ICoRSE) – 2021. ICoRSE 2021. Lecture Notes in Networks and Systems, 305:287–295, Springer, Cham, 2022. doi: 10.1007/978-3-030-83368-8_28.
Go to article

Authors and Affiliations

Sergei Kurennov
1
ORCID: ORCID
Konstantin Barakhov
1
ORCID: ORCID
Olexander Polyakov
1
ORCID: ORCID
Igor Taranenko
1
ORCID: ORCID

  1. National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

There are several large karst caves at haunch part of the Lidong Tunnel during construction, together with inrush water due to high pressure within these caves. In light of it, this paper takes YK342+113 section as an example and adopts finite difference software FLAC 3D, so as to analyze tunnel deformation when crossing karst caves under six different working conditions, including with or without karst cave, before and after karst treatment, along with support locations. According to analysis results: First, the wall rock mainly had deformation at tunnel vault when evacuating at the third bench, which is a critical monitoring focus for tunnel construction; Second, karst cave treatment contributed to better conduct forces on both sides of wall rock, thus reducing vault settlement, while not affecting horizontal convergence and upturn of vaults; Third, treatment measures were proved to be effective in minimizing wall rock deformation by comparing deformation curves under different conditions; Fourth, after treatment measures, the angular points within the cave’s chamber had stress concentration, which might cause secondary collapse. Field monitoring data revealed that the final settlement of the tunnel vault was relatively consistent with the numerical analysis results, with a distinct change in daily settlement after initial support construction. By integrating numerical analysis and field monitoring, the rationality of the karst treatment plan was fully verified, providing a valuable reference for similar projects.
Go to article

Authors and Affiliations

Kai Zhu
1
ORCID: ORCID
Kui Zhang
2
ORCID: ORCID
Xiang-Dong Wu
3
ORCID: ORCID
Xiang-Ge Chen
4 5
ORCID: ORCID

  1. Guangdong Nanyue Transportation Investment and Construction Co., Ltd, Guangzhou 510199, China
  2. Shenzhen ExpresswayOperation andDevelopmentCo., Ltd, Shenzhen 518110,China
  3. Poly ChangDa Engineering Co., Ltd, Guangzhou 510620, China
  4. Chongqing Jiaotong University, School of Civil Engineering, Chongqing 400074, China
  5. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing 400074, China

This page uses 'cookies'. Learn more