Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Featured with a higher velocity, increased power handling capability, and better aging behavior, surface transverse wave (STW) shows more promising prospects than Rayleigh wave nowadays in various sensing applications. The need to design, optimize, and fabricate the related devices motivates the development of modeling and simulation. For this reason, a three-dimensional (3D) finite element (FE) simulation of STW on quartz, considering the crystal cut angle and the electrode effects, is presented in this study. Firstly, we investigated the effects of quartz’s cut angle on the generated waves. Here, the polarized displacements were analyzed to distinguish the wave modes. Secondly, the investigations of the electrode effects on the polarized displacement, phase velocity, and electromechanical coupling factor ( K2) were carried out, for which different material and thickness configurations for the electrodes were considered. Thirdly, to examine the excitation conditions of the generated waves, the admittance responses were inspected. The results showed that not only the crystal cut angle but also the density and the acoustic impedance of the interdigital transducer (IDT) material have a strong influence on the excited waves. This article is the first to analyze STWs considering quartz’s cut angle and electrode effect through a 3D FE model. It could provide a helpful and easy way to design, optimize, and fabricate the related surface acoustic wave devices.
Go to article

Authors and Affiliations

Chao Jiang
1 2 3
Xiaoli Cao
1 2
Feng Yang
1 2 3
Zejun Liu
1

  1. School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing, China
  2. Chongqing Key Laboratory of Intelligent Perception and Blockchain Technology, Chongqing Technology and Business University, Chongqing, China
  3. Chongqing Engineering Laboratory for Detection, Control and Integrated System, Chongqing Technology and Business University, Chongqing, China
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the recent developments of Hybrid Fibre-Reinforced Polymer (HFRP) and nano-Hybrid Fibre-Reinforced Polymer (nHFRP) bars. Hybridization of less expensive basalt fibres with carbon fibres leads to more sustainable alternative to Basalt-FRP (BFRP) bars and more economically-efficient alternative to Carbon-FRP (CFRP) bars. The New-Developed HFRP bars were subjected to tensile axial loading to investigate its structural behaviour. The effect of hybridization on tensile properties of HFRP bars was verified experimentally by comparing the results of tensile test of HFRP bars with non-hybrid BFRP bars. It is worth to mention that the difference in obtained strength characteristics between analytical and numerical considerations was very small, however the obtained results were much higher than results obtained experimentally. Authors suggested that lower results obtained experimentally can be explained by imperfect interphase development and therefore attempted to improve the chemical cohesion between constituents by adding nanosilica particles to matrix consistency.

Go to article

Authors and Affiliations

E.D. Szmigiera
K. Protchenko
M. Urbański
A. Garbacz

This page uses 'cookies'. Learn more