Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Flank wear of multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert in dry hard turning is studied. Machining under wet condition is also performed and flank wear is measured. A novel micro-channel is devised in the insert to deliver the cutting fluid directly at the tool-chip interface. Lower levels of cutting parameters yield the minimum flank wear which is significantly affected by cutting speed and feed rate. In comparison to dry and wet machining, insert with micro-channel reduces the flank wear by 48.87% and 3.04% respectively. The tool with micro-channel provides saving of about 87.5% in the consumption of volume of cutting fluid and energy.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Suha K. Shihab
Zahid A. Khan
Arshad Noor Siddiquee
Noor Zaman Khan

Download PDF Download RIS Download Bibtex

Abstract

This research study intends to develop an online tool condition monitoring system and to examine scientifically the effect of machining parameters on quality measures during machining SAE 1015 steel. It is accomplished by adopting a novel microflown sound sensor which is capable of acquiring sound signals. The dry turning experiments were performed by employing uncoated, TiAlN, TiAlN/WC-C coated inserts. The optimal cutting conditions and their influence on flank wear were determined and predicted value has been validated through confirmation experiment. During machining, sound signals were acquired using NI DAQ card and statistical analysis of raw data has been performed. Kurtosis and I-Kaz coefficient was determined systematically. The correlation between flank wear and I-Kaz coefficient was established, which fits into power-law curve. The neural network model was trained and developed with least error (3.7603e-5). It reveals that the developed neural network can be effectively utilized with minimal error for online monitoring.
Go to article

Bibliography

[1] M. Noordin, V. Venkatesh, S. Sharif, J. Mater. Process. Tech. 185 (1-3), 83-90 (2007). DOI: https://doi.org/10.1016/j.jmatprotec.2006.03.137
[2] C. Moganapriya, M. Vigneshwaran, G. Abbas, A. Ragavendran, V.C. Harissh Ragavendra, R. Rajasekar, Mater. Today, Proceeding (2020).
[3] A.M. Ravi, S.M. Murigendrappa, P.G. Mukunda, T. Indian I. Metals 67 (4), 485-502 (2014). DOI: https://doi.org/10.1007/s12666-013-0369-0
[4] A.P. Kulkarni, V.G. Sargade, Mater. Manuf. Process 30 (6), 748- 755 (2015). DOI: https://doi.org/10.1080/10426914.2014.984217
[5] C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh, S. Jerome, Mater. Today. Proceeding 5 (2), 8532-8538 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.11.550
[6] G .C. Rosa, A.J. Souza, E.V. Possamai, H.J. Amorim, P.D. Neis, Wear 376, 172-177 (2017). DOI: https://doi.org/10.1016/j.wear.2017.01.088
[7] A. Alok, M. Das, Measurement 133, 288-302 (2019). DOI: https://doi.org/10.1016/j.measurement.2018.10.009
[8] R . Yigit, E. Celik, F. Findik, S. Koksal, Int. J. Refract. Hard. Met. 26 (6), 514-524 (2008). DOI: https://doi.org/10.1016/j.ijrmhm.2007.12.003
[9] R . Horváth, Á. Drégelyi-Kiss, G. Mátyási, Acta Polytech. Hung. 11 (2), 137-147 (2014).
[10] R . Kumar, P.S. Bilga, S. Singh, J. Clean Prod. 164, 45-57 (2017). DOI: https://doi.org/10.1016/j.jclepro.2017.06.077
[11] M.K. Gupta, P. Sood, V.S. Sharma, J. Clean Prod. 135, 1276-1288 (2016). DOI: https://doi.org/10.1016/j.jclepro.2016.06.184
[12] S . Pai, T. Nagabhushana, Handbook of Research on Emerging Trends and Applications of Machine Learning, 2020 IGI Global.
[13] A.K. Jain, B.K. Lad, J. Intell. Manuf. 30 (3), 1423-1436 (2019). DOI: https://doi.org/10.1007/s10845-017-1334-2
[14] R . Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld, CIRP Ann. 59 (2), 717-739 (2010). DOI: https://doi.org/10.1016/j.cirp.2010.05.010
[15] C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh, R. Karthick, Arch. Metall. Mater. 62 (3), 1827-1832 (2017). DOI: https://doi.org/10.1515/amm-2017-0276
[16] H .B. Ulas,T. Indian I. Metals 67 (6), 869-879 (2014). DOI: https://doi.org/10.1007/s12666-014-0410-y
[17] S . Thangarasu, S. Shankar, T. Mohanraj, K. Devendran, P. I. Mech. Eng. C.-J. Mec. 234 (1), 329-342 (2019).
[18] J .A. Ghani, M. Rizal, M.Z. Nuawi, C.H. Che Haron, M.J. Ghazali, M.N.A. Rahman. Trans. Tech. Publ. 2010.
[19] S . Oraby, D. Hayhurst, Int. J. Mach. Tools Manuf. 44 (12-13), 1261-1269 (2004). DOI: https://doi.org/10.1016/j.ijmachtools.2004.04.018
Go to article

Authors and Affiliations

Moganapriya Chinnasamy
1
ORCID: ORCID
Rajasekar Rathanasamy
1
ORCID: ORCID
Gobinath Velu Kaliyannan
2
ORCID: ORCID
Prabhakaran Paramasivam
1
ORCID: ORCID
Saravana Kumar Jaganathan
3 4 5
ORCID: ORCID

  1. Kongu Engineering College, Department of Mechanical Engineering, Perundurai – 638060, Tamil Nadu State, India
  2. Kongu Engineering College, Department of Mechatronics Engineering, Perundurai – 638060, Tamil Nadu State, India
  3. Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  4. Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  5. Department of Engineering, Faculty of Science and Engineering, University of Hull, HU6 7RX, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the effect of selected machining parameter values in hard turning of tested OCHN3MFA steel in terms of SEM microstructural analysis of workpiece material, cutting forces, long-term tests, and SEM observations of flank wear VB and crater wear KT of used changeable coated cemented carbide cutting inserts in the processes of performed experiments. OCHN3MFA steel was selected as an experimental (workpiece) material. The selected experimental steel was analyzed prior to hard turning tests to check the initial microstructure of bulk material and subsurface microstructure after hard turning and chemical composition. Study of workpiece material’s microstructure and worn cemented carbide cutting inserts was performed with Tescan Vega TS 5135 scanning electron microscope (SEM) with the X-Ray microanalyzer Noran Six/300. The chemical composition of workpiece material was analyzed with Tasman Q4 surface analyzer. All hard turning experiments of the used specimens were performed under the selected machining parameters in the SU 50A machine tool with the 8th selected individual geometry of coated cementite carbide cutting inserts clamped in the appropriate DCLNR 2525M12-M type of cutting tool holder. During the hard turning technological process of the individual tested samples made of OCHN3MFA steel, cutting forces were measured with a Kistler 9257B piezoelectric dynamometer, with their subsequent evaluation using Dynoware software. After the long-term testing, other experiments and results were also realized, evaluating the influence of selected machining parameters with different cutting insert geometry on the achieved surface quality.
Go to article

Bibliography

  1.  G. Sun, R. Zhou, J. Lu, and J. Mazumder, “Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel,” Acta Mater., vol. 84, pp. 172–189, 2015, doi: 10.1016/j.actamat.2014.09.028.
  2.  A.K. Sahoo and B. Sahoo, “Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts,” Measurement, vol. 45, no. 8, pp. 2153–2165, 2012, doi: 10.1016/j.measurement.2012.05.015.
  3.  R. Lalbondre, P. Krishna, and G.C. Mohankumar, “Machinability Studies of Low Alloy Steels by Face Turning Method: An Experimental Investigation,” Procedia Eng., vol. 64, pp. 632–641, 2013, doi: 10.1016/j.proeng.2013.09.138.
  4.  Ş. Baday, H. Başak, and A. Güral, “Analysis of spheroidized AISI 1050 steel in terms of cutting forces and surface quality,” Met. Mater., vol. 54, no. 05, pp. 315–320, 2016, doi: 10.4149/km_2016_5_315.
  5.  R. Meyer, J. Köhler, and B. Denkena, “Influence of the tool corner radius on the tool wear and process forces during hard turning,” Int. J. Adv. Manuf. Technol., vol. 58, no. 9–12, pp. 933–940, 2011, doi: 10.1007/s00170-011-3451-y.
  6.  M.S.H. Bhuiyan, I.A. Choudhury, and M. Dahari, “Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning,” J. Manuf. Syst., vol. 33, no. 4, pp. 476–487, 2014, doi: 10.1016/j.jmsy.2014.04.005.
  7.  L.H. Maia, A.M. Abrao, W.L. Vasconcelos, W.F. Sales, and A.R. Machado, “A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission,” Tribol. Int., vol. 92, pp. 519–532, 2015, doi: 10.1016/j.triboint.2015.07.024.
  8.  A. Cakan, F. Evrendilek, and V. Ozkaner, “Data-driven simulations of flank wear of coated cutting tools in hard turning,” Mechanics, vol. 21, no. 6, 2016, doi: 10.5755/j01.mech.21.6.12199.
  9.  W.B. Rashid, S. Goel, J.P. Davim, and S.N. Joshi, “Parametric design optimization of hard turning of AISI 4340 steel (69 HRC),” Int. J. Adv. Manuf. Technol., vol. 82, no. 1‒4, pp. 451–462, 2015, doi: 10.1007/s00170-015-7337-2.
  10.  G. Bartarya and S.K. Choudhury, “State of the art in hard turning,” Int. J. Mach. Tools Manuf., vol. 53, no. 1, pp. 1–14, 2012, doi: 10.1016/j. ijmachtools.2011.08.019.
  11.  W. Jiang and A.P. Malshe, “A novel cBN composite coating design and machine testing: A case study in turning,” Surf. Coat. Technol., vol. 206, no. 2‒3, pp. 273–279, 2011, doi: 10.1016/j.surfcoat.2011.07.008.
  12.  B.D. Beake, J.F. Smith, A. Gray, G.S. Fox-Rabinovich, S.C. Veldhuis, and J.L. Endrino, “Investigating the correlation between nano-impact fracture resistance and hardness/modulus ratio from nanoindentation at 25–500°C and the fracture resistance and lifetime of cutting tools with Ti1−xAlxN (x  = 0.5 and 0.67) PVD coatings in milling operations,” Surf. Coat. Technol., vol. 201, no. 8, pp. 4585–4593, 2007, doi: 10.1016/j.surfcoat.2006.09.118.
  13.  A. Cakan, “Real-time monitoring of flank wear behavior of ceramic cutting tool in turning hardened steels,” Int. J. Adv. Manuf. Technol., vol. 52, no. 9‒12, pp. 897–903, 2010, doi: 10.1007/s00170-010-2793-1.
  14.  J. Jaworski and T. Trzepieciński, “Research on durability of turning tools made of low-alloy high-speed steels,” Met. Mater., vol. 54, no. 1, pp. 17–25, 2016, doi: 10.4149/km_2016_1_17.
  15.  W. Zebala, “Tool stiffness influence on the hosen physical parameters on the milling process,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 3, pp. 597–604, 2012, doi: 10.2478/v10175-012-0071-0.
  16.  P. Raja, R. Malajamuthi, and M. Sakthivel “Experimental investigation of cryogenically treated HSS tool in turning AISI1045 using fuzzy logic Taguchi approach,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 687–696, 2019, doi: 10.24425/bpasts. 2019.130178.
  17.  J. Waszko, “Laser surface remelting of powder metallurgy high speed steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no.  6, pp. 1425–1432, 2021, doi: 10.24425/bpasts.2020.135385.
  18.  I. Barényi et al., “Material and technological investigation of machined surfaces of the OCHN3MFA steel,” Met. Mater., vol. 57, no. 02, pp. 131–142, 2020, doi: 10.4149/km_2019_1_131.
Go to article

Authors and Affiliations

Jozef Majerík
1
Igor Barényi
1
Zdenek Pokorný
2
Josef Sedlák
3
Vlastimil Neumann
4
David Dobrocký
2
Aleš Jaroš
3
Michal Krbaťa
1
Jaroslav Jambor
1
Roman Kusenda
1
Miroslav Sagan
1
Jiri Procházka
2

  1. Department of Engineering, Alexander Dubcek University of Trencin, Trencin, Slovak Republic
  2. Department of Mechanical Engineering, University of Defence in Brno, Brno, Czech Republic
  3. Department of Manufacturing Technology, Brno University of Technology, Brno, Czech Republic
  4. Department of Combat and Special Vehicles, University of Defence in Brno, Brno, Czech Republic

This page uses 'cookies'. Learn more