Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Elastic instability of steel I-section members has been investigated with regard to axial compression, major axis bending as well as compression and major axis bending, based on the Vlasov theory of thin-walled members. Investigations presented in this paper deal with the energy method applied to the flexural-torsional buckling (FTB) problems of any complex loading case that for convenience of predictions is treated as a superposition of symmetric and antisymmetric components. Firstly, the review of energy equation formulations is presented for the elastic lateral-torsional buckling (LTB) of beams, then the most accurate beam energy equation, so-called the classical energy equation formulated for bisymmetric I-section beams is extended to cover also the beam-column out-of-plane stability problems, referred hereafter to FTB problems. Secondly, for the simple end boundary conditions, the shape functions of twist rotation and minor axis displacement are chosen such that they cover both symmetric and antisymmetric lateral-torsional buckling modes in relation to two lowest eigenvalues of the beam LTB in major axis bending. Finally, the explicit form of the general solution is presented being dependent upon the dimensionless bending moment equations for symmetric and antisymmetric components, and the load factor where the lower k index identifies the load case.
Go to article

Authors and Affiliations

Marian Antoni Giżejowski
1
Anna Maria Barszcz
1
Zbigniew Stachura
2

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw
Download PDF Download RIS Download Bibtex

Abstract

Steel prismatic elements of equal flanges double-tee section subject to major axis bending and compression, unrestrained in the out-of-plane direction between the supports, are vulnerable to buckling modes associated with minor axis flexural and torsional deformations. When end bending moments are acting alone on the quasi-straight member, the sensitivity to lateral-torsional buckling (LTB) is very much dependent upon the ratio of section minor axis to major axis moments of inertia, and additionally visibly dependent upon the major axis moment gradient ratio. In the case of major axis bending with the presence of a compressive axial force, even of rather small value in relation to the section squash resistance, there is a drastic reduction of structural elements in their realistic lengths to maintain a tendency to fail in the out-of-plane mode, governed by the large twist rotation. Increasing the load effects ratio of dimensionless axial force to dimensionless maximum major axis bending moment, the buckling mode goes away from that of lateral-torsional one, starting to become that closer to the minor axis flexural buckling (FBZ) mode. Different aspects of the flexural-torsional buckling (FTB) resistance of the typical rolled H-section beam-column with regard to the General Method (GM) formulation, developed by the authors elsewhere and based on the parametric finite element analysis, are dealt with in this paper. Investigations are concerned with different member slender ratio, different moment gradient ratios and different load effects ratio. Final conclusions are related to practical applications of the proposed format of General Method in relation to the effect of large displacements on the FTB resistance reduction factor described through the dimensionless measure of action effects and the FTB relative slenderness ratio of quasi-straight beam-columns.
Go to article

Authors and Affiliations

Marian Antoni Giżejowski
1
Radosław Bronisław Szczerba
2
Zbigniew Stachura
2
Marcin Daniel Gajewski
2

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw
Download PDF Download RIS Download Bibtex

Abstract

In investigations constituting Part I of this paper, the effect of approximations in the flexural-torsional buckling analysis of beam-columns was studied. The starting point was the formulation of displacement field relationships built straightforward in the deflected configuration. It was shown that the second-order rotation matrix obtained with keeping the trigonometric functions of the mean twist rotation was sufficiently accurate for the flexural-torsional stability analysis. Furthermore, Part I was devoted to the formulation of a general energy equation for FTB being expressed in terms of prebuckling stress resultants and in-plane deflections through the factor k 1. The energy equation developed there was presented in several variants dependent upon simplified assumptions one may adopt for the buckling analysis, i.e. the classical form of linear eigenproblem analysis (LEA), the form of quadratic eigenproblem analysis (QEA) and refined (non-classical) forms of nonlinear eigenproblem analysis (NEA), all of them used for solving the flexural-torsional buckling problems of elastic beamcolumns. The accuracy of obtained analytical solutions based on different approximations in the elastic flexural–torsional stability analysis of thin-walled beam-columns is examined and discussed in reference to those of earlier studies. The comparison is made for closed form solutions obtained in a companion paper, with a scatter of results evaluated for k 1 = 1 in the solutions of LEA and QEA, as well as for all the options corresponding to NEA. The most reliable analytical solution is recommended for further investigations. The solutions for selected asymmetric loading cases of the left support moment and the half-length uniformly distributed span load of a slender unrestrained beam-column are discussed in detail in Part II. Moreover, the paper constituting Part II investigates how the buckling criterion obtained for the beam-column laterally and torsionally unrestrained between the end sections might be applied for the member with discrete restraints. The recommended analytical solutions are verified with use of numerical finite element method results, considering beam-columns with a mid-section restraint. A variant of the analytical form of solutions recommended in these investigations may be used in practical application in the Eurocode’s General Method of modern design procedures for steelwork.
Go to article

Authors and Affiliations

Marian Giżejowski
1
ORCID: ORCID
Anna Barszcz
1
ORCID: ORCID
Paweł Wiedro
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland

This page uses 'cookies'. Learn more