Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Dynamic stability analysis of the World Class Glider PW-5 has been presented. Glider was assumed to be a rigid body of three degrees of freedom - two linear displacements and one rotation - all in the plane of symmetry. Responses of the glider due to gust and deflection of elevator have been determined. The Laplace transform has been applied to convert the differential equations into algebraic ones. The transformed algebraic equations, after a number of manipulations have been solved for the output variables. Partial-fraction expansions have been performed to obtain the inverse Laplace transforms from the Laplace transform table. Although some restricting assumptions have been made (rigid body, small disturbances) the presented results are original and have not been presented before. The airworthiness regulations (JAR, FAR) do not require performing dynamic analysis in order the glider to be granted a Certificate of Airworthiness by the national aviation authority. To certificate the glider it is sufficient to prove static stability by means of in-flight tests. Flying qualities are qualitatively estimated basing on subjective opinions of the test pilots
Go to article

Authors and Affiliations

Zdobysław Goraj
Adam Przekop
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design methodology of a small guided bomb for Unmanned Aerial Vehicles. This kind of next-generation munition has recently gained a lot of attention in the military market. The bomb is planned to be equipped with inertial measurement unit and infrared seeker.The nose shape and fin optimization procedure was described shortly. Aerodynamic characteristics were calculated by means of theoretical and engineering-level methods. The flight dynamics model of the bomb was obtained and implemented in Simulink software. The numerical simulations of uncontrolled and controlled trajectories were compared. The results indicate that the usage of such a guided small munition, like the designed bomb, might improve significantly the offensive capabilities of Unmanned Aerial Vehicles.
Go to article

Authors and Affiliations

Mariusz Jacewicz
Robert Głębocki
Adrian Szklarski
Download PDF Download RIS Download Bibtex

Abstract

In this paper, quanizted multisine inputs for a maneuver with simultaneous elevator, aileron and rudder deflections are presented. The inputs were designed for 9 quantization levels. A nonlinear aircraft model was exited with the designed inputs and its stability and control derivatives were identified. Time domain output error method with maximum likelihood principle and a linear aircraft model were used to perform parameter estimation. Visual match and relative standard deviations of the estimates were used to validate the results for each quantization level for clean signals and signals with measurement noise present in the data. The noise was included into both output and input signals. It was shown that it is possible to obtain accurate results when simultaneous flight controls deflections are quantized and noise is present in the data.

Go to article

Authors and Affiliations

P. Lichota
Download PDF Download RIS Download Bibtex

Abstract

The main aim of this analysis is to consider a mutual interference between aircraft motion and surrounding flow field. Euler flow model for inviscid, compressible gas and aircraft flight dynamics model was used to analyse quick dynamic manoeuvres. For such manoeuvres, aerodynamic hysteresis has a great influence on aircraft dynamics, which cannot be simulated with the assumption of quasi-steady aerodynamics. On the other hand, the aircraft motion as a rigid body strongly influences the flow field around itself. To account for this mutual interference, the Euler flow equations were used to obtain aerodynamic forces and moments acting on a simplified aircraft configuration (main wing+ tailplane only) during pull-out manoeuvre, and the flight dynamics equations of motion were used to describe dynamics of an aircraft. Initial conditions for the flight dynamics equation of motion were settled up coming from the solution of the Euler flow model. As a test case, a weak pull-out manoeuvre was selected. During this manoeuvre, the highest value of angle of attack doesn't exceed 12 degrees - the value which can be obtained from the classical approach based on flight dynamics equations of motion with quasisteady aerodynamics. However, coupled Euler flight dynamic model has much wider applicability, and can be used for the analysis of manoeuvres at high angles of attack, including large scale separation at sharp edges, unsteadiness and flow asymmetries even for symmetrical undisturbed flowficld case. This method, if successfully verified to a number of important flight manoeuvres (such as spin, Cobra manoeuvre, roll at high angles of attack and other) can open a new, very promising field in the analysis of aircraft dynamics.
Go to article

Authors and Affiliations

Tomasz Iglewski
Zdobysław Goraj
Download PDF Download RIS Download Bibtex

Abstract

The leopard moth borer, Zeuzera pyrina L., is a cossid moth whose larvae bore into twigs, branches and trunks of various woody species, weakening and sometimes killing trees or shrubs. Recently it caused serious losses of apple trees in Bulgaria. In a three-year-old non-protected apple orchard in the Plovdiv region more than 30% of trees perished due to damage by this pest. In the nursery and in commercial orchards up to 5% of branches were injured. Main damage was observed in August and September. Both cossids, Zeuzera pyrina and Cossus cossus, damaged 15–20% of the stems in old commercial orchards and more than 60–70% in orchards without regular plant protection. In this study flight dynamics of Z. pyrina was monitored by two types of pheromone traps: Pherocon (Trécé, USA) – traps with sticky changeable bottom and Mastrap (Isagro, Italy) – dry funnel traps. The second type was more effective. Flight of moths lasted from mid-June to the beginning of September. Pheromone traps may be helpful in IPM systems, for signalling optimal time for spraying against this pest. Further studies are needed to determine correlation between the catches in pheromone traps and appearance of injuries.

Go to article

Authors and Affiliations

Hristina Kutinkova
Radoslav Andreev
Vesselin Arnaoudov
Download PDF Download RIS Download Bibtex

Abstract

This article investigates identification of aircraft aerodynamic derivatives. The identification is performed on the basis of the parameters stored by Flight Data Recorder. The problem is solved in time domain by Quad-M Method. Aircraft dynamics is described by a parametric model that is defined in Body-Fixed-Coordinate System. Identification of the aerodynamic derivatives is obtained by Maximum Likelihood Estimation. For finding cost function minimum, Lavenberg-Marquardt Algorithm is used. Additional effects due to process noise are included in the state-space representation. The impact of initial values on the solution is discussed. The presented method was implemented in Matlab R2009b environment.

Go to article

Authors and Affiliations

Piotr Lichota
Maciej Lasek
Download PDF Download RIS Download Bibtex

Abstract

This article investigates unstable tiltrotor in hover system identification from flight test data. The aircraft dynamics was described by a linear model defined in Body-Fixed-Coordinate System. Output Error Method was selected in order to obtain stability and control derivatives in lateral motion. For estimating model parameters both time and frequency domain formulations were applied. To improve the system identification performed in the time domain, a stabilization matrix was included for evaluating the states. In the end, estimates obtained from various Output Error Method formulations were compared in terms of parameters accuracy and time histories. Evaluations were performed in MATLAB R2009b environment.

Go to article

Bibliography


[1] J. Kaletka. BO-105 identification results. In Rotorcraft System Identification, AGARD LS-178, AGARD LS-178, Paper 9, November 1991.
[2] R.K. Mehra, R.K. Prasanth, and S. Gopalaswamy. XV-15 tiltrotor flight control system design using model predictive control. In I EEE Aerospace Conference, volume 2, pages 139–148, March 1998. doi: 10.1109/AERO.1998.687905.
[3] R.E. Maine and J.E. Murray. Application of parameter estimation to highly unstable aircraft. Journal of Guidance, Control, and Dynamics, 11(3):213–219, May 1988. doi: 10.2514/3.20296.
[4] S. Weiss, H. Friehmelt, E. Plaetschke, and D. Rohlf. X-31A system identification using single-surface excitation at high angles of attack. J ournal of Aircraft, 33(3):485–490, May 1996. doi: 10.2514/3.46970.
[5] E. Özger. Parameter estimation of highly unstable aircraft assuming linear errors. In AIAA Atmospheric Flight Mechanics Conference, Minneapolis, MN, August 2012. doi: 10.2514/6.2012-4511.
[6] B. Mettler, T. Kanade, and M. Tischler. System identification modeling of a model-scale helicopter. Technical Report CMU-RI-TR-00-03, Robotics Institute, Pittsburgh, PA, January 2000.
[7] S.K. Kim and D.M. Tilbury. Mathematical modeling and experimental identification of an unmanned helicopter robot with flybar dynamics. Journal of Robotic Systems, 21(3):95–116, March 2004. doi: 10.1002/rob.20002.
[8] A. Ji and K. Turkoglu. Development of a low-cost experimental quadcopter testbed using an arduino controller for video surveillance. In AIAA Infotech @ Aerospace. AIAA, January 2015. doi: 10.2514/6.2015-0716.
[9] V. Hrishikeshavan, M. Benedict, and I. Chopra. Identification of flight dynamics of a cylcocopter micro air vehicle in hover. Journal of Aircraft, 52(1):116–129, April 2014. doi: 10.2514/1.C032633.
[10] K. Rogowski and R. Maroński. CFD computation of the Savonius rotor. Journal of Theoretical and Applied Mechanics, 53(1):37–45, 2015. doi: 10.15632/jtam-pl.53.1.37.
[11] M.B. Tischler and R.K. Remple. Aircraft and Rotorcraft System Identification. AIAA Education Series. AIAA, Washington, DC, 2 edition, August 2012. doi: /10.2514/4.868207.
[12] B. Etkin. Dynamics of Atmospheric Flight. Dover Publications, Mineola, NY, 2005.
[13] L.A. Zadeh. From circuit theory to system theory. Proceeding of the IRE, 50(5):856–865, May 1962. doi: 10.1109/JRPROC.1962.288302 .
[14] T. Söderstörm and P. Stoica. System Identification. Prentice Hall International, New York, 2001.
[15] G.C. Goodwin and R.L. Payne. Dynamic System Identification: Experiment Design and Data Analysis. Academic Press Inc., New York, 1977.
[16] R.V. Jategaonkar. Flight Vehicle System Identification: A Time Domain Methodology. Progess in Astronautics and Aeronautics. AIAA, Reston, VA, 2 edition, 2015. doi: 10.2514/4.102790.
[17] R.E. Maine and K.W. Iliff. Application of parameter estimation to aircraft stability and control: The output-error approach. Technical Report NASA-RP-1168, NASA, Edwards, CA, June 1986.
[18] V. Klein and E.A. Morelli. Aircraft System Identification: Theory and Practice. AIAA Education Series. AIAA, Reston, VA, August 2006.
[19] P. Stoica and R. Moses. Introduction to Spectral Analysis. Prentice Hall, Upper Saddle River, NJ, 2 edition, 2005.
[20] L.R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing. Prentice Hall Inc., Englewood Cliffs, NJ, 1 edition, 1975.
[21] P. Young and R.J. Patton. Frequency domain identification of remotely-piloted helicopter dynamics using frequency-sweep and schroeder-phased test signals. In AIAA Atmospheric Flight Mechanics Conference, Minneapolis, MN, August 1988. AIAA. doi: 10.2514/6.1988-4349.
Go to article

Authors and Affiliations

Piotr Lichota
1
Joanna Szulczyk
1

  1. Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Poland

This page uses 'cookies'. Learn more