Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

With the emergence of climate change and the increasing human intervention in the global climate, floods have affected different parts of the world. In practice, floods are the most terrible natural disaster in the world, both in terms of casualties and financial losses. To reduce the adverse effects of this phenomenon, it is necessary to use structural and non-structural methods of flood risk management. One of the structural methods of flood control is to allocate a certain part of reservoir dams to flood control. In order to safely exit the flood from the dam reservoir, the spillway structure should be used. One of the important issues in designing a spillway structure is reducing its construction costs. In order to safely exit the flood with a specified return period from the dam reservoir, as the length of the spillway decreases, the height of the water blade on the spillway increases. In other words, decreasing the spillway length increases the height of the dam and its construction and design costs. In this study, the design and comparison of the performance of two glory spillways and lateral spillways have been considered. The results showed that for a given length for the drain edge of both types of spillways, the height of the water blade on the glory spillway is always higher than the lateral spillway. For example, when a 10,000-year-old flood occurs, it is about 8 m.
Go to article

Authors and Affiliations

I Made Sukerta
1
ORCID: ORCID
Tzu-Chia Chen
2
ORCID: ORCID
Jonni Mardizal
3
Mahmood Salih Salih
4
ORCID: ORCID
Isnaini Zulkarnain
5
ORCID: ORCID
Md Zahidul Islam
6
ORCID: ORCID
Mohammed Sabeeh Majeed
7
ORCID: ORCID
Ahmed Baseem Mahdi
8
ORCID: ORCID
Dhameer Ali Mutlak
9
ORCID: ORCID
Surendar Aravindhan
10
ORCID: ORCID

  1. Universitas Mahasaraswati Denpasar, Agriculture and Business Faculty, JL. Kamboja 11A, Denpasar, Bali, 80361, Indonesia
  2. Ming Chi University of Technology, Department of Industrial Engineering and Management, New Taipei City, Taiwan
  3. Universitas Negeri Padang, Faculty of Engineering, Padang, Indonesia
  4. University of Anbar, Upper Euphrates Basin Developing Center, Ramadi, Iraq
  5. Universitas Muhammadiyah Kalimantan Timur, Faculty of Science and Technology, Department of Civil Engineering, Samarinda, Indonesia
  6. International Islamic University Malaysia, Ahmad Ibrahim Kulliyyah of Laws, Civil Law Department, Kuala Lumpur, Malaysia
  7. Al-Manara College for Medical Sciences, Maysan, Iraq
  8. Al-Mustaqbal University College, Anesthesia Techniques Department, Babylon, Iraq
  9. Al-Nisour University College, Radiology and Sonar Techniques Department, Baghdad, Iraq
  10. Saveetha University, Department of Pharmocology, Chennai, India
Download PDF Download RIS Download Bibtex

Abstract

Flood risk management are considerably influenced by several factors, such as all sources of flooding, social circum-stances, policy and even the potential for local economic growth. To encourage government, business, community and oth-er parties to continue investing in flood risk management projects, it is necessary to give understanding that the projects can also provide economic benefits through systematic predictions and assessments of costs, benefits and social values, espe-cially on flood-affected communities. This study aims: (1) to develop knowledge and understanding on small-scale flood risk management project in Malang City, Indonesia, and; (2) to assess the economic efficiency of the project investment considering all benefits, both monetary and non-monetary. The research method is a mixed method combining quantitative questionnaires (N = 53 from 162 families) with qualitative in-depth interviews (N = 10) and field observations. The runoff discharge and the inundation depth were calculated using hydrology and hydraulic analysis, while the economic efficiency was analysed using cost benefit analysis (CBA). The results show that the community-based flood risk management system can reduce the flood risk up to 30% compared to before the implementation of that system. This system also provides direct financial benefits through the use of drainage channels for fish and vegetables farming. It causes the increase of the net so-cial benefit about 70–90% and the net present value (NPV) greater than zero (NPV > 0). Therefore, the project investment is recommended to be proceeded.

Go to article

Authors and Affiliations

Laksni Sedyowati
ORCID: ORCID
Grahita Chandrarin
Ginanjar I.K. Nugraha
Bambang Nugroho

This page uses 'cookies'. Learn more