Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The influence of external factors, temperature and flow velocity on the corrosion processes St3 in model solutions petrochemical plant recycled water with high salinity and hardness without open systems and in the presence of the inhibiting composition. It was found that an increase in temperature leads to a linear increase in corrosion rates, and the change in circulating water flow rate leads to the extreme nature of corrosion processes; optimal conditions are determined. Recommended use of cathodic inhibitors or mixed type inhibitor, in particular, the composition "SVOD-BI" (means for controlling the biological corrosion), which can significantly reduce the effect of temperature and flow on the corrosion rate St3, promotes the growth and strengthening of the oxide film in the presence of oxygen, increases the degree of protection of steel and preventing the formation of at its surface carbonate-calcium deposits.
Go to article

Authors and Affiliations

G. Tatarchenko
N. Biloshitska
O. Vodolazskyy
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with possibility to improve operating performance of cast-iron heat exchangers by providing them with a copper alloy (CuTi2Cr) with the use of the flame spraying method. A test exchanger was cast of a gray cast iron with vermicular graphite in ferriticpearlitic matrix obtained in production conditions at KAW-MET Iron Foundry with the wire method used to vermicularize the material. The test samples were two plates cast in sand molds, of which one was given a flame-sprayed CuTi2Cr coat on one side. The operating performance of such model cast-iron heat exchangers, with and without CuTi2Cr coating, was tested on a set-up for determining the heat flow rate (thermal power) transferred by the heat exchanger to environment. The obtained results indicate that the value of the heat flow rate characterizing the CuTi2Cr-coated cast-iron heat exchanger was by 10% higher compared to the flow rate of heat conveyed to environment by the heat exchanger without coating.

Go to article

Authors and Affiliations

M. Mróz
A.W. Orłowicz
M. Tupaj
M. Jacek-Burek
M. Radoń
M. Kawiński
Download PDF Download RIS Download Bibtex

Abstract

The mechanical properties of steel components are controlled by the chemical composition and mechanical treatment to which the steel is submitted. Non-metallic inclusions have a very high influence on the steel quality but secondary metallurgy enables to reduce their content in the steel. Possibilities of secondary metallurgy are relatively extensive but financial situation in Slovak foundries does not enable to make investments in secondary metallurgy in the near future. Accessible means for influencing of steel quality is injection of aninert gas. Main goal of experiments described in the article was verify the influence of blowing of argon into the steel in an electric induction furnace on its cleanness. Duration and flow-rate of argon blowing have a very clearly influence on the final content of non-metallic inclusions. Minimum time of argon blowing necessary for reducing of content of non-metallic inclusions in one tonne electric induction furnace was more than 6 minutes and recommended argon flow rate was 10 litters per minute.
Go to article

Authors and Affiliations

A. Pribulová
Download PDF Download RIS Download Bibtex

Abstract

The results of drill stem tests made on the autochthonous Miocene deposits of the Upper Badenian - Lower Sarmatian age in the Carpathian Foredeep were analyzed. Reservoir tests were performed in open and cased holes, where inflows of formation water of varying saturation degree and sometimes contaminated with drilling mud filtrate, were observed. A total of 58 intervals, geophysically qualified as gas-bearing, were analyzed. Statistical analysis methods were used for determining the influence of the formation depth on the depth of deposition of the Miocene, and also dependence of initial back-pressure exerted on the reservoir during DST, on the depth of deposition of the reservoir. No correlation was found between water flow rate and initial differential pressure. A satisfactory correlation was obtained between hydrostatic pressure of water cushion in the tubing string and reservoir pressure for selected 22 the Miocene intervals in the Dębica region. In this region the pressure quotient php/pz broadly ranged between 0.05 and 0.57. Another correlation was noted between initial back-pressure and a depth at which pressure was measured and initial back-pressure, and formation water flow rate. The regression equations determined with statistical methods can be used for predicting values of formation pressure, initial value of back-pressure, formation water flow rate and initial differential pressure during DST. On this basis technological parameters of successive reservoir tests can be determined for in the analyzed area of the Carpathian Foredeep, particularly in the Dębica region.

Go to article

Authors and Affiliations

Stanisław Dubiel
Barbara Uliasz-Misiak
Download PDF Download RIS Download Bibtex

Abstract

Present study describes about the effect of coolant water flow rate and coolant water temperature underside cooling slope on structural characteristics of casted AZ91 Mg alloy. Here, over the cooling slope, hot melt flows from top to bottom. Additionally, under the cooling slope, coolant water flows from bottom to top. Slurry gets obtained at bottom of cooling slope by pouring AZ91 Mg melt from top of the slope. Coolant water flow rate with coolant water temperature underside cooling slope warrant necessary solidification and shear to obtain AZ91 Mg slurry. Specifically, slurry at 5 different coolant water flow rates (4, 6, 8, 10, 12 lpm) and at 5 different coolant water temperatures (15, 20, 25, 30, 35°C) underside cooling slope are delivered inside metal mould. Modest coolant water flow rate of 8 lpm with coolant water temperature of 25°C (underside cooling slope) results fairly modest solidification that would enormously contribute towards enhanced structural characteristics. As, quite smaller/bigger coolant water flow rate/temperature underside cooling slope would reason shearing that causes inferior structural characteristics. Ultimately, favoured microstructure was realized at 8 lpm coolant water flow rate and 25°C coolant water temperature underside cooling slope with grain size, shape factor, primary α-phase fraction and grain density of 63 µm, 0.71, 0.68 and 198, respectively. Correspondingly, superior mechanical properties was realized at 8 lpm coolant water flow rate and 25°C coolant water temperature underside cooling slope with tensile strength, elongation, yield strength and hardness of 250 MPa, 8%, 192 MPa and 80 HV, respectively.
Go to article

Authors and Affiliations

S.K. Sahu
1
ORCID: ORCID
N.K. Kund
1
ORCID: ORCID

  1. VSS University of Technology, Department of Production Engineering, Burla 768018, India
Download PDF Download RIS Download Bibtex

Abstract

The article presents the experimental results of the calibration of the typical check structure with sluice gates installed in a trapezoidal irrigation channel. Hydraulic experiments on sluice gate discharge capacity were performed on a model made in a 1:2 scale. It has been explained how the method of measuring the downstream water depth below the sluice gate in the check structures installed in a trapezoidal irrigation channels affects the measured depth values. On the basis of hydraulic measurements, regression relationships were developed for the discharge coefficients for submerged outflow through the sluice gate in two types of sluice gates installed in irrigation channels. The formulas allow to calculate the volumetric flow rate below the submerged sluice gate after determining the water depth upstream and below the sluice gate and the gate opening height. The differences in volumetric flow rates calculated from regression relationships and measured values do not exceed 10%, which confirms their practical suitability for calculating the discharge through a sluice gate mounted in a trapezoidal channel. The values of the discharge coefficients determined in the channels with rectangular cross-sections are not useful for the discharge coefficients of sluice gates check structures installed in trapezoidal channels. Nomograms and relationships for discharge coefficients of the analysed sluice gate were developed.
Go to article

Authors and Affiliations

Elżbieta Kubrak
1
ORCID: ORCID
Janusz Kubrak
2
ORCID: ORCID

  1. Warsaw University of Life Sciences – SGGW, Water Center, Warsaw, Poland
  2. Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering, Nowoursynowska 166, 02-787 Warsaw, Poland

This page uses 'cookies'. Learn more