Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The lubrication of angular contact ball bearings under high-speed motion conditions is particularly important to the working performance of rolling bearings. Combining the contact characteristics of fluid domain and solid domain, a lubrication calculation model for angular contact ball bearings is established based on the RNG k-ε method. The pressure and velocity characteristics of the bearing basin under the conditions of rotational speed, number of balls and lubricant parameters are analyzed, and the lubrication conditions and dynamics of the angular contact ball bearings under different working conditions are obtained. The results show that the lubricant film pressure will rise with increasing speed and viscosity of the lubricant. The number of balls affects the pressure and velocity distribution of the flow field inside the bearing but has a small effect on the values of the characteristic parameters of the bearing flow field. The established CFD model provides a new approach to study the effect of fluid flow on bearing performance in angular contact ball bearings.
Go to article

Bibliography

[1] B. Yan, L. Dong, K. Yan, F. Chen, Y. Zhu, and D. Wang. Effects of oil-air lubrication methods on the internal fluid flow and heat dissipation of high-speed ball bearings. Mechanical Systems and Signal Processing, 151:107409, 2021. doi: 10.1016/j.ymssp.2020.107409.
[2] H. Bao, X. Hou, X. Tang, and F. Lu. Analysis of temperature field and convection heat transfer of oil-air two-phase flow for ball bearing with under-race lubrication. Industrial Lubrication and Tribology, 73(5):817–821, 2021. doi: 10.1108/ilt-03-2021-0067/v2/decision1.
[3] T.A. Harris. Rolling Bearing Analysis. Taylor & Francis Inc. 1986.
[4] T.A. Harris and M.N. Kotzalas. Advanced Concepts of Bearing Technology. Taylor & Francis Inc. 2006.
[5] F.J. Ebert. Fundamentals of design and technology of rolling element bearings. Chinese Journal of Aeronautics, 23(1):123-136, 2010. doi: 10.1016/s1000-9361(09)60196-5.
[6] T.A. Harris. An analytical method to predict skidding in high speed roller bearings. A S L E Transactions, 9(3):229–241, 1966. doi: 10.1080/05698196608972139.
[7] A. Wang, S. An, and T. Nie. Analysis of main bearings lubrication characteristics for diesel engine. In: IOP Conference Series: Materials Science and Engineering, 493(1):012135, 2019. doi: 10.1088/1757-899X/493/1/012135.
[8] W. Zhou, Y. Wang, G. Wu, B. Gao, and W. Zhang. Research on the lubricated characteristics of journal bearing based on finite element method and mixed method. Ain Shams Engineering Journal, 13(4):101638, 2022. doi: 10.1016/j.asej.2021.11.007.
[9] J. Chmelař, K. Petr, P. Mikeš, and V. Dynybyl. Cylindrical roller bearing lubrication regimes analysis at low speed and pure radial load. Acta Polytechnica, 59(3):272–282, 2019. doi: 10.14311/AP.2019.59.0272.
[10] C. Wang, M. Wang, and L. Zhu. Analysis of grooves used for bearing lubrication efficiency enhancement under multiple parameter coupling. Lubricants, 10(3):39, 2022. doi: 10.3390/lubricants10030039.
[11] Z. Xie and W. Zhu. An investigation on the lubrication characteristics of floating ring bearing with consideration of multi-coupling factors. Mechanical Systems and Signal Processing, 162:108086, 2022. doi: 10.1016/j.ymssp.2021.108086.
[12] M. Almeida, F. Bastos, and S. Vecchio. Fluid–structure interaction analysis in ball bearings subjected to hydrodynamic and mixed lubrication. Applied Sciences, 13(9):5660, 2023. doi: 10.3390/app13095660.
[13] J. Sun, J. Yang, J. Yao, J. Tian, Z. Xia, H. Yan, and Z. Bao. The effect of lubricant viscosity on the performance of full ceramic ball bearings. Materials Research Express, 9(1):015201, 2022. doi: 10.1088/2053-1591/ac4881.
[14] D.Y. Dhande and D.W. Pande. A two-way {FSI} analysis of multiphase flow in hydrodynamic journal bearing with cavitation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39:3399–3412, 2017. doi: 10.1007/s40430-017-0750-8.
[15] H. Liu, Y. Li, and G. Liu. Numerical investigation of oil spray lubrication for transonic bearings. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:401, 2018. doi: 10.1007/s40430-018-1317-z.
Go to article

Authors and Affiliations

Bowen Jiao
1
ORCID: ORCID
Qiang Bian
1
ORCID: ORCID
Xinghong Wang
1
Chunjiang Zhao
1
ORCID: ORCID
Ming Chen
1
Xiangyun Zhang
2

  1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
  2. Luoyang Bearing Research Institute Co., Ltd, Luoyang, China
Download PDF Download RIS Download Bibtex

Abstract

The present work deals with continuum mechanical considerations for deformable and rigid solids as well as for fluids. A common finite element framework is used to approximate all systems under considerations. In particular, we present a standard displacement based formulation for the deformable solids and make use of this framework for the transition of the solid to a rigid body in the limit of infinite stiffness. At last, we demonstrate how to immerse a discretized solid into a fluid for fluid-structure interaction problems.

Go to article

Authors and Affiliations

Christian Hesch
Peter Betsch
Download PDF Download RIS Download Bibtex

Abstract

A novel type of an axial, piston-driven high pressure hydraulic pump with variable capacity marks a significant improvement in the area of the hydraulic machinery design. Total discharge from hydrostatic forces eliminates a need for a servomechanism, thus simplifying operation, reducing weight and introducing the possibility of the pump displacement control by computer. PWK-type pumps, invented in the Gdansk University of Technology, offer high efficiency for pressure levels up to 55 MPa, ability to work self sucking even at high speed. However, the heart of the new invention, the commutation unit, creates harmful pressure peaks. Those peaks can be mitigated by the introduction of a compensation chamber with elastic walls. Owing to the dynamic character of events taking place in the pump, a need for computer simulation arouse in order to understand phenomena leading to the occurrence of pressure peaks and choose compensation chamber parameters accordingly. A CFD package alone would not be sufficient to reliably represent the interaction between the compensation chamber wall and the working fluid. This paper presents Fluid Structure Interaction approach comparing 3 different models: 2 simplified models of the pump and a full pump model.

Go to article

Authors and Affiliations

Leszek Osiecki
Piotr Patrosz
Bettina Landvogt
Janusz Piechna
Tomasz Zawistowski
Bartek Żyliński
Download PDF Download RIS Download Bibtex

Abstract

The most important task in tests of resistance of aircraft structures to the terorist threats is to determine the vulnerability of thin-walled structures to the blast wave load. For obvious reasons, full-scale experimental investigations are carried out exceptionally. In such cases, numerical simulations are very important. They make it possible to tune model parameters, yielding proper correlation with experimental data. Basing on preliminary numerical analyses - experiment can be planned properly. The paper presents some results of dynamic simulations of finite element (FE) models of a medium-size aircraft fuselage. Modeling of C4 detonation is also discussed. Characteristics of the materials used in FE calculations were obtained experimentally. The paper describes also the investigation of sensitivity of results of an explicit dynamic study to FE model parameters in a typical fluid-structure interaction (FSI) problem (detonation of a C4 explosive charge). Three cases of extent of the Eulerian mesh (the domain which contains air and a charge) were examined. Studies have shown very strong sensitivity of the results to chosen numerical models of materials, formulations of elements, assumed parameters etc. Studies confirm very strong necessity of the correlation of analysis results with experimental data. Without such a correlation, it is difficult to talk about the validation of results obtained from "explicit" codes.

Go to article

Authors and Affiliations

Adam Dacko
Jacek Toczyski
Download PDF Download RIS Download Bibtex

Abstract

We apply a fluid-structure interaction method to simulate prototypical dynamics of the aortic heart-valve. Our method of choice is based on a monolithic coupling scheme for fluid-structure interactions in which the fluid equations are rewritten in the 'arbitrary Lagrangian Eulerian' (ALE) framework. To prevent the backflow of structure waves because of their hyperbolic nature, a damped structure equation is solved on an artificial layer that is used to prolongate the computational domain. The increased computational cost in the presence of the artificial layer is resolved by using local mesh adaption. In particular, heuristic mesh refinement techniques are compared to rigorous goal-oriented mesh adaption with the dual weighted residual (DWR) method. A version of this method is developed for stationary settings. For the nonstationary test cases the indicators are obtained by a heuristic error estimator, which has a good performance for the measurement of wall stresses. The results for prototypical problems demonstrate that heart-valve dynamics can be treated with our proposed concepts and that the DWR method performs best with respect to a certain target functional.

Go to article

Authors and Affiliations

Thomas Wick
Download PDF Download RIS Download Bibtex

Abstract

This study presents an analysis of the effect of the concentrated mass on the acoustic power and the resonant frequencies of a vibrating thin circular plate. The fluid-structure interactions and the acoustic wave radiation effect have been included. The eigenfunction expansion has been used to express the transverse displacement of the plate. The appropriate number of modes is determined approximately to achieve physically correct results. Then highly accurate results are obtained numerically. The radiated acoustic power has been used to determine the resonant frequencies. The introducing of the concentrated mass is justified by modelling the added mass of the moving component of the exciter.
Go to article

Authors and Affiliations

Wojciech P. Rdzanek
1
Krzysztof Szemela
1

  1. University of Rzeszow, College of Natural Sciences, Institute of Physics, Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

For a deeper understanding of the inner ear dynamics, a Finite-Element model of the human cochlea is developed. To describe the unsteady, viscous creeping flow of the liquid, a pressure-displacement-based Finite-Element formulation is used. This allows one to efficiently compute the basilar membrane vibrations resulting from the fluid-structure interaction leading to hearing nerve stimulation. The results show the formation of a travelingwave on the basilar membrane propagating with decreasing velocity towards the peaking at a frequency dependent position. This tonotopic behavior allows the brain to distinguish between sounds of different frequencies. Additionally, not only the middle ear, but also the transfer behavior of the cochlea contributes to the frequency dependence of the auditory threshold. Furthermore, the fluid velocity and pressure fields show the effect of viscous damping forces and allow us to deeper understand the formation of the pressure difference, responsible to excite the basilar membrane.

Go to article

Bibliography

[1] L. Robles and M.A. Ruggero. Mechanics of the mammalian cochlea. Physiological Reviews, 81(3):1305–1352, 2001. doi: 10.1152/physrev.2001.81.3.1305.
[2] M. Fleischer. Mehrfeldmodellierung und Simulation der äußeren Haarsinneszelle der Cochlea (Multifield modelling and simulation of the outer hair cells of the cochlea). Doctoral Thesis. Technische Universität Dresden, Germany, 2012. (in German).
[3] J. Baumgart. The hair bundle: Fluid-structure interaction in the inner ear. Doctoral Thesis. Technische Universität Dresden, Germany, 2010 .
[4] J. Tian, X. Huang, Z. Rao, N. Ta, and L. Xu. Finite element analysis of the effect of actuator coupling conditions on round window stimulation. Journal of Mechanics in Medicine and Biology, 15(4):1–19, 2015. doi: 10.1142/S0219519415500487.
[5] R.Z. Gan, B.P. Reeves, and X. Wang. Modeling of sound transmission from ear canal to cochlea. Annals of Biomedical Engineering, 35:2180–2195, 2007. doi: 10.1007/s10439-007-9366-y.
[6] L. Xu, X. Huang, N. Ta, Z. Rao, and J. Tian. Finite element modeling of the human cochlea using fluid-structure interaction method. Journal of Mechanics in Medicine and Biology, 15(3):1–13, 2015. doi: 10.1142/S0219519415500396.
[7] H.W. Ades and H. Engström. Anatomy of the inner ear. In: Keidel W.D., Neff W.D. (eds) Auditory System. Handbook of Sensory Physiology, vol. 5/1. Springer, Berlin, 1974. doi: 10.1007/978-3-642-65829-7_5.
[8] C.R. Steele, G.J. Baker, J.A. Tolomeo, and D.E. Zetes-Tolometo. Cochlear mechanics. In: J.D. Bronzino (ed.) The Biomedical Engineering Handbook, CRC Press, 2006.
[9] S. Iurato. Functional implications of the nature and submicroscopic structure of the tectorial and basilar membranes. The Journal of the Acoustical Society of America, 34(9):1386–1395, 1962. doi: 10.1121/1.1918355.
[10] H. Herwig. Strömungsmechanik: Einführung in die Physik von technischen Strömungen (Introduction to the Physics of Technical Flows). Springer Vieweg, Wiesbaden; 2008. (in German).
[11] H. Schlichting and K. Gersten. Boundary-Layer Theory, vol. 7. Springer-Verlag, Berlin, 2017.
[12] G.H. Keulegan and L.H. Carpenter. Forces on cylinders and plates in an oscillating fluid. Journal of Research of the National Bureau of Standards, 60:423–440, 1958.
[13] E. Zwicker. Über die Viskosität der Lymphe im Innenohr des Hausschweines (About the viscosity of the lymph in the inner ear of the domestic pig). Acta Otolaryngologica, 78(1-6): 65–72, 1974. (in German). doi: 10.3109/00016487409126327.
[14] M. Lesser and D. Berkley. Fluid mechanics of the cochlea. Part 1. Journal of Fluid Mechanics, 51(3):497–512, 1972. doi: 10.1017/S0022112072002320.
[15] A. De Paolis, H. Watanabe, J. Nelson, M. Bikson, M. Marom, M. Packer, and L. Cardoso. Human cochlear hydrodynamics: A high-resolution μCT-based finite element study. Journal of Biomechanics, 50:209–216, 2017. doi: 10.1016/j.jbiomech.2016.11.020.
[16] L. Papula. Mathematische Formelsammlung (Mathematical Formula Collection). Springer Verlag, Wiesbaden, 2014. (in German).
[17] O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The Finite Element Method: Its Basis and Fundamentals, 6 ed. Elsevier Butterworth-Heinemann, Oxford, 2006.
[18] J.E. Sader. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 84(1):64–76, 1998. doi: 10.1063/1.368002.
[19] E. de Boer. Auditory physics. Physical principles in hearing theory. Part 1. Physics Reports, 62(2):87–174, 1980. doi: 10.1016/0370-1573(80)90100-3.
[20] M.J. Wittbrodt, C.R. Steele, and S. Puria. Developing a physical model of the human cochlea using microfabrication methods. Audiology and Neurotology, 11(2):104–112, 2006. doi: 10.1159/000090683.
[21] C.R. Steele and J.G. Zais. Effect of coiling in a cochlear model. The Journal of the Acoustical Society of America, 77(5):1849–1852, 1985. doi: 10.1121/1.391935.
[22] J. Wysocki. Dimensions of the human vestibular and tympanic scalae. Hearing Research, 135(1-2):39–46, 1999. doi: 10.1016/S0378-5955(99)00088-X.
[23] M. Thorne, A.N. Salt, J.E. DeMott, M.M. Henson, O.W. Henson, and S.L. Gewalt. Cochlear fluid space dimensions for six species derived from reconstructions of resonance images. Annals of Otology, Rhinology & Laryngology, 109(10):1661–1668, 1999. doi: 10.1097/00005537-199910000-00021.
[24] G. Herrmann and H. Liebowitz. Mechanics of Bone Fractures. Academic Press, New York, 1972.
[25] J. Kirikae. The Middle Ear. Tokyo: University of Tokyo Press, 1960.
[ 26] F. Atturo, M. Barbara, and H. Rask-Andersen. Is the human round window really round? An anatomic study with surgical implications. Otology and Neurotology, 35(8):1354–1360, 2014. doi: 10.1097/MAO.0000000000000332.
[27] M.V. Goycoolea and L. Lundman. Round window membrane. Structure, function and permeability. A review. Microscopy Research and Technique, 36(3):201–211, 1997. doi: 10.1002/(SICI)1097-0029(19970201)36:3201::AID-JEMT8>3.0.CO;2-R.
[28] M. Kwacz, M. Mrówka, and J. Wysocki. Round window membrane motion before and after stapedotomy surgery. An experimental study. Acta of Bioengineering and Biomechanics, 13(3):27–33, 2011.
[29] X. Zhang and R.Z. Gan. Dynamic properties of human round window membrane in auditory frequencies running head: Dynamic properties of round window membrane. Medical Engineering & Physics, 35(3):310–318, 2013. doi: 10.1016/j.medengphy.2012.05.003.
[30] A.A. Poznyakovskiy, T. Zahnert, Y. Kalaidzidis, N. Lazurashvili, R. Schmidt, H.J. Hardtke, B. Fischer, and Y.M. Yarin. A segmentation method to obtain a complete geometry model of the hearing organ. Hearing Research, 282(1-2):25–34, 2011. doi: 10.1016/j.heares.2011.06.009.
[31] P. Leichsenring. Aufbereitung von Geometriedaten der menschlichen Cochlea (Preparation of geometry data for the human cochlea). Master Thesis. Technische Universität Dresden, Germany, 2012. (in German).
[32] E.G. Wever. The width of the basilar membrane in man. Annals of Otology, Rhinology & Laryngology, 47:37–47, 1938.
[33] F. Böhnke. Finite Elemente Analysen zur Berechnung der Signalverarbeitung in der Cochlea (Analyses for computation of signal processing in the cochlea). Doctoral Thesis. Technische Universität Ilmenau, Germany, 1999. (in German).
[34] L.M. Cabezudo. The ultrastructure of the basilar membrane in the cat. Acta Oto-Laryngologica, 86(1-6):160–175, 1978. doi: 10.3109/00016487809124733.
[35] S. Newburg, A. Zosuls, P. Barbone, and D. Mountain. Mechanical response of the basilar membrane to lateral micromanipulation. In: Concepts and Challenges in the Biophysics of Hearing. Proceedings of the 10th International Workshop on the Mechanics of Hearing, pages 240–246, 2009. doi: 10.1142/9789812833785_0038.
[36] V. Tsuprun and P. Santi. Ultrastructure and immunohistochemical identification of the extracellular matrix of the chinchilla cochlea. Hearing Research, 129(1-2):35–49, 1999. doi: 10.1016/S0378-5955(98)00219-6.
[37] I.U. Teudt and C.P. Richter. The hemicochlea preparation of the guinea pig and other mammalian cochleae. Journal of Neuroscience Methods, 162(1-2):187–197, 2007. doi: 10.1016/j.jneumeth.2007.01.012.
[38] M. Fleischer, R. Schmidt, and A.W. Gummer. Compliance profiles derived from a three-dimensional finite-element model of the basilar membrane. The Journal of the Acoustical Society of America, 127(5):2973–2991, 2010. doi: 10.1121/1.3372752.
[39] J. Baumgart, M. Fleischer, and C. Steele. The traveling wave in the human inner ear studied by means of a finite-element model including middle and outer ear. In: Proceedings of the 23rd International Congress on Sound and Vibration, Greece, 2016.
[40] H. Altenbach, J.W. Altenbach, and W. Kissing. Mechanics of Composite Structural Elements. Springer-Verlag, Berlin, 2013.
[41] R.C. Naidu and D.C. Mountain. Basilar membrane tension calculations for the gerbil cochlea. The Journal of the Acoustical Society of America, 121(2):994–1002, 2007. doi: 10.1121/1.2404916.
[42] S. Liu and R.D. White. Orthotropic material properties of the gerbil basilar membrane. The Journal of the Acoustical Society of America, 123(4):2160–2171, 2008. doi: 10.1121/1.2871682.
[43] C.E. Miller. Structural implications of basilar membrane compliance measurements. The Journal of the Acoustical Society of America, 77(4):146–1474, 1985. doi: 10.1121/1.392041.
[44] L. Schweitzer, C. Lutz, M. Hobbs, and S.P. Weaver. Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea. Hearing Research, 97(1-2):84–94, 1996. doi: 10.1016/S0378-5955(96)80010-4.
[45] R.C. Naidu and D.C. Mountain. Measurements of the stiffness map challenge. A basic tenet of cochlear theories. Hearing Research, 124(1-2):124–131, 1998. doi: 10.1016/S0378-5955(98)00133-6.
[46] H. Wada and T. Kobayashi. Dynamical behavior of middle ear: Theoretical study corresponding to measurement results obtained by a newly developed measuring apparatus. The Journal of the Acoustical Society of America, 87(1):237–245, 1990. doi: 10.1121/1.399290.
[47] M. Kwacz, P. Marek, P. Borkowski, and M. Mrówka. A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery. Biomechanics and Modeling in Mechanobiology, 12:1243–1261, 2013. doi: 10.1007/s10237-013-0479-y.
[48] P. Wahl. Simulation der Fluidströmung und Basilarmembranschwingung im menschlichen Innenohr (Simulation of fluid flow and basilar membrane vibrations in the human inner ear). Doctoral Thesis. Universität Stuttgart, Germany, 2018. (in German).
[49] J.H. Sim, M. Chatzimichalis, M. Lauxmann, C. Röösli, A. Eiber, and A. Huber. Complex stapes motion in human ears. Journal of the Association for Research in Otolaryngology, 11(3):329–341, 2010. doi: 10.1007/s10162-010-0207-6.
[50] S. Huang and E.S. Olson. Auditory nerve excitation via a non-traveling wave mode of basilar membrane motion. Journal of the Association for Research in Otolaryngology, 12:559–575, 2011. doi: 10.1007/s10162-011-0272-5.
[51] G. von Békésy. Experiments in Hearing. McGraw-Hill, New York, 1960.
[52] T.Ren. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proceedings of the National Academy of Sciences, 99(26):17101–17106, 2002. doi: 10.1073/pnas.262663699.
[53] S. Stenfelt, S. Puria, N. Hato, and R.L. Goode. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Hearing Research, 181(1-2):131–143, 2003. doi: 10.1016/S0378-5955(03)00183-7.
[54] S. Ramamoorthy, N.V. Deo, and K. Grosh. A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli. The Journal of the Acoustical Society of America, 121(5):2758–2773, 2007. doi: 10.1121/1.2713725.
[55] W.E. Langlois and M.O. Deville. Slow Viscous Flow. 2nd ed. Springer, Cham, 2014. doi: 10.1007/978-3-319-03835-3.
[56] E. Olson. Direct measurement of intra-cochlear pressure waves. Nature, 402:526–529, 1999. doi: 10.1038/990092.
[57] D.D. Greenwood. A cochlear frequency-position function for several species – 29 years later. The Journal of the Acoustical Society of America, 87(6):2592–2605, 1990. doi: 10.1121/1.399052.
[58] H.G. Boenninghaus and T. Lenarz. HNO: Hals-Nasen-Ohrenheilkunde (Otorhinolaryngology). Springer, Berlin, 2007. (in German).
Go to article

Authors and Affiliations

Philipp Wahl
1
Pascal Ziegler
1
Peter Eberhard
1

  1. Institute of Engineering and Computational Mechanics, University of Stuttgart, Germany

This page uses 'cookies'. Learn more