Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Foamed concrete incorporating processed spent bleaching earth (PSBE) produces environmentally friendly foamed concrete. Compressive strength, porosity, and rapid chloride penetration tests were performed to investigate the potential application for building material due to its low density and porous concrete. Laboratory results show that 30% PSBE as cement replacement in foamed concrete produced higher compressive strength. Meanwhile, the porosity of the specimen produced by 30% PSBE was 45% lower than control foamed concrete. The porosity of foamed concrete incorporating PSBE decreases due to the fineness of PSBE that reduces the volume of void space between cement and fine aggregate. It was effectively blocking the pore and enhances the durability. Consistently, the positive effect of incorporating of PSBE has decreased the rapid chloride ion permeability compared to that control foamed concrete. According to ASTM C1202-19 the foamed concrete containing 30% PSBE was considered low moderate permeability based on its charge coulombs value of less than 4000. Besides, the high chloride ion permeability in foamed concrete is because the current quickly passes through the specimen due to its larger air volume. In conclusion, incorporating PSBE in foamed concrete generates an excellent pozzolanic effect, producing more calcium silicate hydrate and denser foamed concrete, making it greater, fewer voids, and higher resistance to chloride penetration.
Go to article

Authors and Affiliations

Rokiach Othman
1
Khairunisa Muthusamy
1
ORCID: ORCID
Mohd Arif Sulaiman
1
ORCID: ORCID
Youventharan Duraisamy
2
ORCID: ORCID
Ramadhansyah Putra Jaya
2
ORCID: ORCID
Chong Beng Wei
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3
ORCID: ORCID
Sajjad Ali Mangi
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Agata Śliwa
6
ORCID: ORCID

  1. Faculty of Civil Engineering Technology, University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
  2. Department of Civil Engineering, College of Engineering, University Malaysia Pahang, 26300 Gambang,Pahang, Malaysia
  3. Center of Excellence Geopolymer and Green Technology, University Malayia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  4. Department of Civil Engineering, Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs, Sindh 66020, Pakistan
  5. Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Czestochowa
  6. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this investigation, the confinement effects of micro synthetic fibers on lightweight foamed concrete (LFC) were examined. The parameters evaluated were porosity, water absorption, shrinkage, compressive strength, flexural strength and tensile strength. Three densities were cast which were 600 kg/m3, 1100 kg/m3, and 1600 kg/m3. Besides, the number of layers (1 to 3 layers) of micro synthetic fibers was also being examined. Based on the result obtained, the porosity improved by 8.0% to 16.3%, 13.8% to 25.6%, and 9.3% to 24.5% for the LFC with densities of 600 kg/m3, 1100 kg/m3, and 1600 kg/m3 confined with 1 layer, 2 layers, and 3 layers of micro synthetic fibers, respectively. Besides, for the water absorption test, the enhancements were 6.9% to 15.6%, 20.0 to 27.1%, and 12.2 to 29.6% for the respective densities and number of layers of micro synthetic fibers employed, while the drying shrinkage improved by 48.5% to 76.8%, 57.4% to 72.1%, and 43.2 % to 68.2% for the respective densities and number of layers of micro synthetic fibers employed. For the strength properties, a confinement with 3 layers of micro synthetic fibers showed significant results, where enhancements of 153% (600 kg/m3), 97% (1100 kg/m3), and 102% (1600 kg/m3) were obtained for the compression strength; 372% (600 kg/m3), 258% (1100 kg/m3), and 332% (1600 kg/m3) for the bending strength; and 507% (600 kg/m3), 343% (1100 kg/m3), and 332% (1600 kg/m3) for the splitting tensile strength, respectively, compared to the control LFC.
Go to article

Authors and Affiliations

Md Azree Othuman Mydin
1
ORCID: ORCID

  1. Civil Engineering, School of Housing, Building and Planning, Universiti Sains Malaysia, 11800, Penang, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The concrete-filled section of columns has been widely in construction used due to its structural elements. As a result, the usage of composite columns has recently increased all over the world. However, using foamed concrete alone does not result in much improvements in strength. Therefore, this paper examines the use of foamed concrete containing fibre to improve the strength of composite columns. Specifically, this study aims to determine the bond strength of concrete-filled hollow section (CFHS) with modified fibrous foamed concrete. Two types of fibre are used in this work, namely, steel fibre and polypropylene fibre, with rice husk ash (RHA) as a sand replacement to improve the compressive strength of foamed concrete. The CFHS with modified fibrous foamed concrete is tested by using the push-out method, and the results show that CFHS with steel fibre has a highest bond strength.

Go to article

Authors and Affiliations

S.A.A. Khairuddin
N.A. Rahman
N. Jamaluddin
Z.M. Jaini
A. Elamin
R.H.M. Rum

This page uses 'cookies'. Learn more