Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Innovative treatments that actually involve damaging certain parts of the brain may represent some patients’ only chance for recovery.
Go to article

Authors and Affiliations

Mirosław Ząbek
1 2
Paweł Obierzyński
1 2
Adrian Drożdż
1 3

  1. Interventional Neurology Center (INC), Department of Neurosurgery, Bródno Mazovian Hospital in Warsaw
  2. Department of Neurosurgery, Medical Center for Post-Graduate Education (CMKP)
  3. Center for Biostructure Research, Medical University of Warsaw
Download PDF Download RIS Download Bibtex

Abstract

The emergence of high-intensity focused ultrasound applications brings great potential to establish noninvasive therapeutic treatment in place of conventional surgery. However, the development of ultrasonic technology also poses challenges to the design and manufacture of high-power ultrasound transducers with sufficient acoustic pressure. Here, the design of a sector vortex Archimedean spiral phased array transducer that is able to enhance focal acoustic pressure is proposed by maximizing the filling factor of the piezoelectric array. The transducer design was experimentally verified by hydrophone measurements and matched well with acoustic simulation studies. The focal deflection was shown to be feasible up to ±9 mm laterally and up to ±20 mm axially, where the effective focal acoustic pressure can be maintained above 50% and the level of the grating lobe below 30%. Furthermore, a homogeneous pressure distribution without secondary focus was observed in the pre-focal region of the transducer. The rational design of a high-intensity focused ultrasound transducer indicates promising development in the treatment of deep tissue thermal ablation for clinical applications.
Go to article

Authors and Affiliations

Xiaodan Lu
1
Deping Zeng
2

  1. State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering Chongqing Medical University Chongqing, China
  2. National Engineering Research Center of Ultrasound Medicine Chongqing, China

This page uses 'cookies'. Learn more