Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the capability of applying selected modern remote sensing methods based on commonly available high spatial resolution MODIS images to fog and low layer clouds detection. Single spectral channel images, differential images and selected color compositions are analyzed for distinguishing the areas of the phenomena occurrence. Their internal structure and fog/cloud particles properties are assessed using brightness temperature and reflectance diagrams.
Go to article

Authors and Affiliations

Karolina Krawczyk
Janusz Jasiński
Download PDF Download RIS Download Bibtex

Abstract

Fog networks facilitate ultra-low latency through the use of data availability near the network edge in fog servers. Existing work in fog networks considers the objective of energy efficiency and low latency for internet-of-things (IoT) for resource allocation. These works provide solutions to energy efficiency and low latency resource allocation problem without consideration of secure communication. This article investigates the benefits of fog architecture from the perspective of three promising technologies namely device-to-device (D2D) communication, caching, and physical layer security. We propose security provisioning followed by mode selection for D2D-assisted fog networks. The secrecy rate maximization problem is formulated first, which belongs to mixed-integer nonlinear programming (MINLP) problem. It is NP-hard, that is why an exhaustive search for finding the solution is complex. Keeping in view the complexity, a nonlinear technique namely outer approximation algorithm (OAA) is applied. OAA is a traditional algorithm, whose results are compared with the proposed heuristic algorithm, namely the security heuristic algorithm (SHA). Performance of the network is observed for the different numbers of eavesdroppers, IoT nodes, and fog nodes.
Go to article

Authors and Affiliations

Rabeea Basir
1
ORCID: ORCID
Naveed Ahmad Chughtai
2
Mudassar Ali
2 3
Saad Qaisar
1 4
Anas Hashmi
4

  1. School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology, Islamabad, Pakistan
  2. Military College of Signals, National University of Sciences and Technology, Rawalpindi, Pakistan
  3. Telecommunication Engineering Department, University of Engineering and Technology, Taxila
  4. Department of Electrical and Electronic Engineering, University of Jeddah, Jeddah, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

The global demand for water has been growing rapidly in the last decade with a global population growth rate of 1.1% p.a., which is equivalent to 81 million people per year. Southeast Asian countries are facing severe water scarcity challenge due to their location in the tropics. In 2018, the Sumba Island experienced the highest temperature of 36°C and lesser rain-fall of 911.1 mm3 per year and it was classified as a long dry island prone to drought due to dry winds from Australian des-serts. This paper focuses on the perceived effect of water scarcity on livelihoods in the Mandahu Village, Indonesia, due to climate change. Sampling and survey covered rural households and the findings showed that the average household of 4 to 8 people consumed around 250 dm3 of water per day. The community relied on two main sources of clean water from two main springs. However, the prolonged dry season from May until December every year results in major challenges to ac-cess water and eventually affect the agricultural productivity. Hence, the feasibility of the fog collection technology has been investigated from technological, economic and social points of view as a reliable and cost-effective source of water. The outcome of this work will produce a feasibility statement for fog-to-water as an alternative solution counteracting water scarcity in the Sumba Island, a solution which can be replicated in other climate change stricken hot spots in South-east Asia.
Go to article

Bibliography

ABDELKHALEQ R.A., ALHAJ AHMED I. 2007. Rainwater harvesting in ancient civilizations in Jordan. Water Science and Technology: Water Supply. Vol. 7(1) p. 85–93. DOI 10.2166/ws.2007.010.
ABDUL‐WAHAB S.A., LEA V. 2008. Reviewing fog water collection worldwide and in Oman. International Journal of Environmental Studies. Vol. 65(3) p. 487–500. DOI 10.1080/ 00207230802149983.
AHMED W., GARDNER T., TOZE S. 2011. Microbiological quality of roof-harvested rainwater and health risks: A review. Journal of Environmental Quality. Vol. 40(1) p. 13–21. DOI 10.2134/jeq2010.0345.
AL-FARUQ U., SAGALA S., RIANAWATI E., CURRIE E. 2016. Assessment of renewable energy impact to community resilience in Sumba Island [online]. Resilience Development Initiative. Working Paper Series. No. 9 pp. 14. [Access 12.04.2020]. Available at: https://www.preventionweb.net/go/51505
AMOATEY P., BANI R. 2011. Wastewater management. In: Waste water: Evaluation and management [online]. Ed. F.S.G. Einschlag p. 379–398. DOI 10.5772/16158. [Access: 17.03.2020]. Available at: https://www.intechopen.com/books/waste-water-evaluation-and-management/wastewater-management
ARIFFIN N., ABDULLAH M.M.A.B., ZAINOL M.R.R.M.A., MURSHED M.F., FARIS M.A., BAYUAJI R. 2017. Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web of Conferences. Vol. 97, 01023 pp. 8.
BAAWAIN M., CHOUDRI B.S., AHMED M., PURNAMA A. (eds.). 2015. Recent progress in desalination, environmental and marine outfall systems. Basel, Switzerland: Springer International Publishing.
BHUVANESWARI K., GEETHALAKSHMI V., LAKSHMANAN A., SRINIVASAN R., SEKHAR N.U. 2013. The impact of El Nino/ Southern oscillation on hydrology and rice productivity in the Cauvery Basin, India: Application of the soil and water assessment tool. Weather and Climate Extremes. Vol. 2 p. 39–47. DOI 10.1016/j.wace.2013.10.003.
BPS 2013. Sumba Timur Dalam Angka 2013. Katalog BPS 1102001.5302. Waingapu. Badan Pusat Statistik Kabupaten Sumba Timurp Rovinsi Nusa Tenggara Timur pp. 431.
BPS 2016. Provinsi Nusa Tenggara Timur Dalam Angka 2016 [Nusa Tenggara Timur Province in Figures 2016]. Badan Pusat Statistik Provinsi Nusa Tenggara Timur. ISSN 0215-2223 pp. 511.
BPS 2017. Jumlah UMK dan Jumlah Penduduk Menurut Pulau di Peovinsi NTT [Number of UMK and Total Population by Island in NTT Province] [online]. Badan Pusat Statistic Provinsi Nusa Tenggara Timur. [Access 10.05.2020]. Available at: https://ntt.bps.go.id/statictable/
CERECEDA P., SCHEMENAUER R.S., SUIT M. 1992. An alternative water supply for Chilean coastal desert villages. International Journal of Water Resources Development. Vol. 8(1) p. 53–59.
CHANDRAPPA R., GUPTA S., KULSHRESTHA U.C. 2011. Coping with climate change: principles and Asian context. Berlin–Heidelberg. Springer Verlag. ISBN 978-3-642-44745-7 pp. 370. DOI 10.1007/978-3-642-19674-4. CRAINE S. 2013. Final short fieldwork report for a village electrification options on Sumba Island. Hivos.
DAVTALAB R., SALAMAT A., OJI R. 2013. Water harvesting from fog and air humidity in the warm and coastal regions in the south of Iran. Irrigation and Drainage. Vol. 62(3) p. 281–288. DOI 10.1002/ird.1720.
DEVI R., DIBOCH B., SINGH V. 2012. Rainwater harvesting practices: A key concept of energy-water linkage for sustainable development. Scientific Research and Essays. Vol. 7(5) p. 538–543. DOI 10.5897/SRE09.487.
DHINGRA N., SINGH N.S., SHARMA R., PARWEEN T. 2020. Rainwater harvesting and current advancements. In: Modern age waste water problems. Solutions Using Applied Nanotechnology. Eds. M. Oves, M. Omaish Ansari, M. Zain Khan, M., Shahadat, I.M.I. Ismail. Springer Nature Switzerland p. 293–307.
DODSON L.L., BARGACH J. 2015. Harvesting fresh water from fog in rural Morocco: research and impact Dar Si Hmad’s Fogwater Project in Aït Baamrane’. Procedia Engineering. Vol. 107 p. 186–193. DOI 10.1016/j.proeng.2015.06.073.
DOMEN J.K., STRINGFELLOW W.T., CAMARILLO M.K., GULATI S. 2014. Fog water as an alternative and sustainable water resource. Clean Technologies and Environmental Policy. Vol. 16(2) p. 235–249. DOI 10.1007/s10098-013-0645-z.
FESSEHAYE M., ABDUL-WAHAB S.A., SAVAGE M.J., KOHLER T., GHEREZGHIHER T., HURNI H. 2017. Assessment of fog-water collection on the eastern escarpment of Eritrea. Water International. Vol. 42(8) p. 1022–1036. DOI 10.1080/02508060.2017.1393714.
FISHER R., BOBANUBA W.E., RAWAMBAKU A., HILL G.J., RUSSELL-SMITH J. 2006. Remote sensing of fire regimes in semi-arid Nusa Tenggara Timur, eastern Indonesia: Current patterns, future prospects. International Journal of Wildland Fire. Vol. 15(3) p. 307–317. DOI 10.1071/WF05083.
FREDERIKS B. 2013. Sumba energy from waste. Desk study report. Sumba Iconic Island Reports [online]. [Access 20.05.2020]. Hivos pp. 20 + App.. Available at: https://sumbaiconicisland.org/wp-content/
GANDHIDASAN P., ABUALHAMAYEL H.I., PATEL F. 2018. Simplified modeling and analysis of the fog water harvesting system in the Asir Region of the Kingdom of Saudi Arabia. Aerosol and Air Quality Research. Vol. 18(1) p. 200–213. DOI 10.4209/aaqr.2016.11.0481.
GOKKON B. 2015. Sumba renewable energy: A bright future where the lights don’t go out [online]. [Access 10.04.2020]. Available at: http://jakartaglobe.id/news/sumba-renewable-energybright-future-lights-dont-go/
HAMILTON K., REYNEKE B., WASO M., CLEMENTS T., NDLOVU T., KHAN W., …, AHMED W. 2019. A global review of the microbiological quality and potential health risks associated with roof-harvested rainwater tanks. npj Clean Water. Vol. 2(1), 7 p. 1–18. DOI 10.1038/s41545-019-0030-5.
HELMREICH B., HORN H. 2009. Opportunities in rainwater harvesting. Desalination. Vol. 248(1–3) p. 118–124. DOI 10.1016/j.desal.2008.05.046. Hivos 2012. Sumba: An iconic island to demonstrate the potential of renewable energy. Poverty reduction, economic development and energy access combined [online]. [Access 20.05.2020]. Available at: https://sumbaiconicisland.org/wp-content/
KHAWAJI A.D., KUTUBKHANAH I.K., WIE J. M. 2008. Advances in seawater desalination technologies. Desalination. Vol. 221(1–3) p. 47–69. DOI 10.1016/j.desal.2007.01.067.
LATTEMANN S., HÖPNER T. 2008. Environmental impact and impact assessment of seawater desalination. Desalination. Vol. 220(1–3) p. 1–15. DOI 10.1016/j.desal.2007.03.009.
MAYERHOFER M., LOSTER T. 2015. Fog nets. Available at: https://www.munichre-foundation.org/content/dam/munichre/
MBILINYI B.P., TUMBO S.D., MAHOO H.F., SENKONDO E.M., HATIBU N. 2005. Indigenous knowledge as decision support tool in rainwater harvesting. Physics and Chemistry of the Earth. P. A/B/C. Vol. 30(11–16) p. 792–798. DOI 10.1016/ j.pce.2005.08.022.
MCSWEENEY C., NEW M., LIZCANO G., LU X. 2010. The UNDP Climate Change Country Profiles Improving the Accessibility of Observed and Projected Climate Information for Studies of Climate Change in Developing Countries. Bulletin of the American Meteorological Society. Vol. 91 p. 157–166. DOI 10.1175/2009BAMS2826.1.
METER K.J.V., BASU N.B., TATE E., WYCKOFF J. 2014. Monsoon harvests: The living legacies of rainwater harvesting systems in South India. Environmental Science & Technology. Vol. 48(8) p. 4217–4225. DOI 10.1021/es4040182.
MILLER J. 2019. Aqualonis: Converting fog into drinking water. Obtaining drinking water from fog [online]. [Access 12.04.2020]. Available at: https://www.european-business.com/aqualonis-gmbh/aqualonis-converting-fog-into-drinking-water
MONK K.A., DE FRETES Y., REKSODIHARDJO-LILLEY G. 1997. The ecology of Nusa Tenggara and Maluku. Vol. V. The Ecology of Indonesia Series. Hong Kong: Periplus Editions pp. 966.
OKTAVIANI R., AMALIAH S., RINGLER C., ROSEGRANT M.W., SULSER T.B. 2011. The impact of global climate change on the Indonesian economy [online]. International Food Policy Research Institute Discussion paper, 01148. [Access 17.05.2020]. Available at: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/126762
OLIVIER J. 2008. Anyone for a glass of fresh fog? Alternative water sources for South Africa [online]. Research Report. Cape Town. UNISA p. 30–31. [Access 30.05.2020]. Available at: https://www.yumpu.com/en/document/view/27593719/unisa-2008-research-report-university-of-south-africa
PEREIRA D. 2008. Atacama [online]. flickr. [Access 20.05.2020]. Available at: https://www.flickr.com/photos/galeria_miradas/5816252302/in/photostream/
PIRNIA A., GOLSHAN M., DARABI H., ADAMOWSKI J., ROZBEH S. 2019. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. Journal of Water and Climate Change. Vol. 10(4) p. 725–742. DOI 10.2166/wcc.2018.162.
QADIR M., JIMÉNEZ G.C., FARNUM R.L., DODSON L.L., SMAKHTIN V. 2018. Fog water collection: Challenges beyond technology. Water. Vol. 10(4), 372 p. 1–10. DOI 10.3390/w10040372.
QDAIS H.A. 2008. Environmental impacts of the mega desalination project: the Red–Dead Sea conveyor. Desalination. Vol. 220(1–3) p. 16–23. DOI 10.1016/j.desal.2007.01.019.
RAHMAN A. 2017. Recent advances in modelling and implementation of rainwater harvesting systems towards sustainable development. Water. Vol. 9(12), 959. DOI 10.3390/ w9120959.
REARDON C., DOWNTON P., MCGEE C. 2013. Construction systems [online]. Your Home Australia’s guide to environmentally sustainable homes. [Access 17.05.2020]. Available at: https://www.yourhome.gov.au/materials/construction-systems
SASSEN K., WANG Z., LIU D. 2009. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. Journal of Geophysical Research: Atmospheres. Vol. 114. Iss. D4, ID D00H06. DOI 10.1029/2009JD011916.
SCHEMENAUER R.S., CERECEDA P. 1994. Fog collection's role in water planning for developing countries. Natural Resources Forum. Vol. 18. No. 2 p. 91–100. DOI 10.1111/j.1477-8947.1994.tb00879.x.
SCHEMENAUER R.S., OSSES P., LEIBBRAND M. 2004. Fog collection evaluation and operational projects in the Hajja Governorate, Yemen. In: Proceedings of the 3rd International Conference on Fog, Fog Collection and Dew. 11–15.10.2004. Cape Town, South Africa.
SHANYENGANA E.S., SANDERSON R.D., SEELY M.K., SCHEMENAUER R.S. 2003. Testing greenhouse shade nets in collection of fog for water supply. Journal of Water Supply: Research and Technology – AQUA. Vol. 52(3) p. 237–241.
SIDDIQUE M.N.I., MUNAIM M.S.A., ZULARISAM A.W. 2015. Feas¬ibility analysis of anaerobic co-digestion of activated manure and petrochemical wastewater in Kuantan (Malaysia). Journal of Cleaner Production. Vol. 106 p. 380–388. DOI 10.1016/j.jclepro.2014.08.003.
SII 2016. The iconic island for renewable energy. Sumba Iconic Island [online]. [Access 07.05.2020]. Available at: https://sumbaiconicisland.org/
SIPAYUNG S.B., SUSANTI I., MARYADI E., NURLATIFAH A., SISWANTO B., NAFAYEST M., PUTRI F.A., HERMAWAN E. 2019. Analysis of drought potential in Sumba Island until 2040 caused by climate change. Journal of Physics: Conference Series. Vol. 1373, 012004. DOI 10.1088/1742-6596/1373/1/012004.
SYAUKAT Y. 2011. The impact of climate change on food production and security and its adaptation programs in Indonesia. Journal of the International Society for Southeast Asian Agricultural Sciences. Vol. 17(1) p. 40–51. The Guardian 2016. Cloud fishing' reels in precious water for villagers in rural Morocco [online]. [Access 26.5.2020]. Available at: https://www.theguardian.com/global-development/2016/dec/26/cloud-fishing-reels-in-precious-water-villagers-rural-morocco-dar-si-hmad
TIEDEMANN K.J., LUMMERICH A. 2010. Fog harvesting on the verge of economic competitiveness [online]. 5th International Conference on Fog, Fog Collection and Dew. 25–30.07.2010. Münster, Germany. id.FOGDEW2010-93. [Access 07.05.2020]. Available at: http://meetings.copernicus.org/fog2010
TORTAJADA C. 2006. Water management in Singapore. Water Resources Development. Vol. 22(2) p. 227–240. DOI 10.1080/07900620600691944.
UNDP 2017. Sisi lain perubahan iklim: Mengapa Indonesia harus beradaptasi untuk melindungi rakyat iskinnya. United Nations Development Programme Indonesia. ISBN 978-979-17069-0-2 pp. 20.
USAID 2017. Climate risk profile: Indonesia [online]. Fact sheet pp. 5. [Access 30.05.2020]. Available at: https://www.climatelinks.org/sites/default/files/asset/document/2017_USAID_ATLAS_Climate%20Risk%20Profile_Indonesia.pdf
VINKE K., SCHELLNHUBER H.J., COUMOU D., GEIGER T., GLANEMANN N., HUBER V., KNAUS M., KROPP J., KRIEWALD S., LAPLANTE B., LEHMANN J. 2017. A region at risk: The human dimensions of climate change in Asia and the Pacific [online]. Mandaluyong City, Metro Manila: Asian Development Bank. [Access 30.04.2020]. Available at: https://www.adb.org/sites/default/files/publication/325251/region-risk-climate-change.pdf
WINQVIST G., DAHLBERG E., SMITH B., BERLEKOM M. 2008. Indonesia environmental and climate change policy brief. Gothenburg. Sida Helpdesk for Environmental Economics, University of Gothenburg pp. 24. WV 2016. World vision’s response to El Niño in Asia-Pacific. Snapshot of interventions in priority countries and funding available per response [online]. World Vision Asia Pacific, OCHA, US National Oceanic & Atmospheric Administration, World Meteorological Organization [Access 30.04.2020]. Available at: http://www.wvi.org/sites/default/files/ElNino_AsiaPacific_April2016.pdf
YOUNOS T. 2005. Environmental issues of desalination. Journal of Contemporary Water Research and Education. Vol. 132(1) p. 11–18. DOI 10.1111/j.1936-704X.2005.mp132001003.x.
ZHANG S.X., BABOVIC V. 2012. A real options approach to the design and architecture of water supply systems using innov-ative water technologies under uncertainty. Journal of Hydroinformatics. Vol. 14(1) p. 13–29. DOI 10.2166/hydro.2011.078.

Go to article

Authors and Affiliations

Zaitizila Ismail
1
ORCID: ORCID
Yun Ii Go
1
ORCID: ORCID
Mahawan Karuniasa
2
ORCID: ORCID

  1. Heriot-Watt University Malaysia, School of Engineering and Physical Science, 62200 Putrajaya, Wilayah Persekutuan Putrajaya, Malaysia
  2. Universitas Indonesia, School of Environmental Science, Jakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The unpredictable and huge data generation nowadays by smart devices from IoT and mobile Crowd Sensing applications like (Sensors, smartphones, Wi-Fi routers) need processing power and storage. Cloud provides these capabilities to serve organizations and customers, but when using cloud appear some limitations, the most important of these limitations are Resource Allocation and Task Scheduling. The resource allocation process is a mechanism that ensures allocation virtual machine when there are multiple applications that require various resources such as CPU and I/O memory. Whereas scheduling is the process of determining the sequence in which these tasks come and depart the resources in order to maximize efficiency. In this paper we tried to highlight the most relevant difficulties that cloud computing is now facing. We presented a comprehensive review of resource allocation and scheduling techniques to overcome these limitations. Finally, the previous techniques and strategies for allocation and scheduling have been compared in a table with their drawbacks.
Go to article

Authors and Affiliations

Abbas M. Ali Al-muqarm
1 2
Naseer Ali Hussien
3

  1. University of Kufa, Iraq
  2. Computer Technical Engineering Department, The Islamic University, Iraq
  3. Alayen University, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Range-gated-imaging system, which can be used to eliminate backscatter in strong scattering environments, is based on two high speed technologies. It uses high power, ultra-short pulse laser as the light source. And it opens the optical gate of an ICCD camera with a micro-channel-plate image intensifier in a very short time while the laser pulses reflected by the object is coming back to the ICCD camera. Using this range-gated-imaging technology, the effect of scattered light can be reduced and a clear image is obtained.

In this paper, the test results of the range-gated-imaging system under dense aerosol environments, which simulates environments in the reactor containment building when the severe accident of the nuclear power plant occurred, are described. To evaluate the observation performance of the range-gated-imaging system under such dense fog environment, we made a test facility. Fog particles are sprayed into the test facility until fog concentration is reached to the postulated concentration level of the severe accident of the nuclear power plant. At such dense fog concentration conditions, we compared and evaluated the observation performances of the range-gated-imaging system and the CCD camera.

Go to article

Authors and Affiliations

J.W. Cho
Y.S. Choi
K.M. Jeong

This page uses 'cookies'. Learn more